Bicocycle double cross constructions
Yükleniyor...
Tarih
2023-12-01
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
World Scientific
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
We introduce the notion of a bicocycle double cross product (sum) Lie group (algebra), and a bicocycle double cross product bialgebra, generalizing the unified products. On the level of Lie groups the construction yields a Lie group on the product space of two pointed manifolds, none of which being necessarily a subgroup. On the level of Lie algebras, a Lie algebra is obtained on the direct sum of two vector spaces, which are not required to be subalgebras. Finally, on the quantum level a bialgebra is obtained on the tensor product of two (co)algebras that are not necessarily sub-bialgebras.
Açıklama
Anahtar Kelimeler
Double cross product bialgebras, Double cross product Lie groups, Double cross sum Lie algebras, Unified product, Matched pairs, Hopf-algebras, Extending structures, Product bialgebras, Lie-groups
Kaynak
Journal of Algebra and its Applications
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
22
Sayı
12
Künye
Esen, O., Guha, P. & Sütlü, S. (2022). Bicocycle double cross constructions. Journal of Algebra and its Applications, 22(12), 1-32. doi:10.1142/S0219498823502547