Bicocycle double cross constructions
dc.authorid | 0000-0002-6766-0287 | |
dc.authorid | 0000-0001-7294-9678 | |
dc.authorid | 0000-0003-0925-8668 | |
dc.contributor.author | Esen, Oğul | en_US |
dc.contributor.author | Guha, Partha | en_US |
dc.contributor.author | Sütlü, Serkan | en_US |
dc.date.accessioned | 2022-10-24T19:43:27Z | |
dc.date.available | 2022-10-24T19:43:27Z | |
dc.date.issued | 2023-12-01 | |
dc.department | Işık Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Matematik Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering and Natural Sciences, Department of Mathematics | en_US |
dc.description.abstract | We introduce the notion of a bicocycle double cross product (sum) Lie group (algebra), and a bicocycle double cross product bialgebra, generalizing the unified products. On the level of Lie groups the construction yields a Lie group on the product space of two pointed manifolds, none of which being necessarily a subgroup. On the level of Lie algebras, a Lie algebra is obtained on the direct sum of two vector spaces, which are not required to be subalgebras. Finally, on the quantum level a bialgebra is obtained on the tensor product of two (co)algebras that are not necessarily sub-bialgebras. | en_US |
dc.identifier.citation | Esen, O., Guha, P. & Sütlü, S. (2022). Bicocycle double cross constructions. Journal of Algebra and its Applications, 22(12), 1-32. doi:10.1142/S0219498823502547 | en_US |
dc.identifier.doi | 10.1142/S0219498823502547 | |
dc.identifier.endpage | 32 | |
dc.identifier.issn | 0219-4988 | |
dc.identifier.issn | 1793-6829 | |
dc.identifier.issue | 12 | |
dc.identifier.scopus | 2-s2.0-85139064135 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 1 | |
dc.identifier.uri | https://hdl.handle.net/11729/5074 | |
dc.identifier.uri | http://dx.doi.org/10.1142/S0219498823502547 | |
dc.identifier.volume | 22 | |
dc.identifier.wos | WOS:000853130900002 | |
dc.identifier.wosquality | Q3 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Science Citation Index Expanded (SCI-EXPANDED) | en_US |
dc.institutionauthor | Sütlü, Serkan | en_US |
dc.institutionauthorid | 0000-0003-0925-8668 | |
dc.language.iso | en | en_US |
dc.publisher | World Scientific | en_US |
dc.relation.ispartof | Journal of Algebra and its Applications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Double cross product bialgebras | en_US |
dc.subject | Double cross product Lie groups | en_US |
dc.subject | Double cross sum Lie algebras | en_US |
dc.subject | Unified product | en_US |
dc.subject | Matched pairs | en_US |
dc.subject | Hopf-algebras | en_US |
dc.subject | Extending structures | en_US |
dc.subject | Product bialgebras | en_US |
dc.subject | Lie-groups | en_US |
dc.title | Bicocycle double cross constructions | en_US |
dc.type | Article | en_US |