Topological Hopf algebras and their Hopf-cyclic cohomology

Yükleniyor...
Küçük Resim

Tarih

2019-01-29

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Taylor and Francis

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

A natural extension of the Hopf-cyclic cohomology, with coefficients, is introduced to encompass topological Hopf algebras. The topological theory allows to work with infinite dimensional Lie algebras. Furthermore, the category of coefficients (AYD modules) over a topological Lie algebra and those over its universal enveloping (Hopf) algebra are isomorphic. For topological Hopf algebras, the category of coefficients is identified with the representation category of a topological algebra called the anti-Drinfeld double. Finally, a topological van Est type isomorphism is detailed, connecting the Hopf-cyclic cohomology to the relative Lie algebra cohomology with respect to a maximal compact subalgebra.

Açıklama

Anahtar Kelimeler

Hopf-cyclic cohomology, Infinite dimensional Lie algebras, Topological Hopf algebras, 19D55, 16S40, 57T05, Quantum groups, Co-homology, Cyclic homology, Cyclic cohomology, Algebra

Kaynak

Communications in Algebra

WoS Q Değeri

Q3
Q3

Scopus Q Değeri

Q2

Cilt

47

Sayı

4

Künye

Rangipour, B. & Sütlü, S. S. (2019). Topological hopf algebras and their hopf-cyclic cohomology. Communications in Algebra, 47(4), 1490-1515. doi:10.1080/00927872.2018.1508581