On submanifolds with 2-Type Pseudo-Hyperbolic Gauss Map in Pseudo-Hyperbolic space

Yükleniyor...
Küçük Resim

Tarih

2017-02

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Birkhauser Verlag AG

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

In this paper, we study pseudo-Riemannian submanifolds of a pseudo-hyperbolic space Hsm-1(-1)?Es+1m with 2-type pseudo-hyperbolic Gauss map. We give a characterization of proper pseudo-Riemannian hypersurfaces in Hsn+1(-1)?Es+1n+2 with non-zero constant mean curvature and 2-type pseudo-hyperbolic Gauss map. For n= 2 , we prove classification theorems. In addition, we show that the hyperbolic Veronese surface is the only maximal surface fully lying in H24(-1)?H2m-1(-1) with 2-type pseudo-hyperbolic Gauss map. Moreover, we prove that a flat totally umbilical pseudo-Riemannian hypersurface Mtn of the pseudo-hyperbolic space Htn+1(-1)?Et+1n+2 has biharmonic pseudo-hyperbolic Gauss map.

Açıklama

Anahtar Kelimeler

Finite-type map, Hyperbolic Verenose surface, Maximal surface, Pseudo-hyperbolic Gauss map, Pseudo-Riemannian hypersurfaces

Kaynak

Mediterranean Journal of Mathematics

WoS Q Değeri

Q2

Scopus Q Değeri

Q2

Cilt

14

Sayı

1

Künye

Şen, R. Y. & Dursun, U. (2017). On submanifolds with 2-type pseudo-hyperbolic gauss map in pseudo-hyperbolic space. Mediterranean Journal of Mathematics, 14(1), 1-20. doi:10.1007/s00009-016-0819-0