Adaptive convolution kernel for artificial neural networks
dc.authorid | 0000-0002-8649-6013 | |
dc.authorid | 0000-0002-5639-0648 | |
dc.contributor.author | Tek, Faik Boray | en_US |
dc.contributor.author | Çam, İlker | en_US |
dc.contributor.author | Karlı, Deniz | en_US |
dc.date.accessioned | 2021-01-29T08:43:58Z | |
dc.date.available | 2021-01-29T08:43:58Z | |
dc.date.issued | 2021-02 | |
dc.department | Işık Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.department | Işık Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.department | Işık University, Faculty of Arts and Sciences, Department of Mathematics | en_US |
dc.description | This work was supported by The Scientific and Technological Research Council of Turkey programme (TUBITAK-1001 no: 118E722), Isik University BAP programme, Turkey (no: 16A202), and NVIDIA hardware donation of a Tesla K40 GPU unit, Turkey. | en_US |
dc.description.abstract | Many deep neural networks are built by using stacked convolutional layers of fixed and single size (often 3 × 3) kernels. This paper describes a method for learning the size of convolutional kernels to provide varying size kernels in a single layer. The method utilizes a differentiable, and therefore backpropagation-trainable Gaussian envelope which can grow or shrink in a base grid. Our experiments compared the proposed adaptive layers to ordinary convolution layers in a simple two-layer network, a deeper residual network, and a U-Net architecture. The results in the popular image classification datasets such as MNIST, MNIST-CLUTTERED, CIFAR-10, Fashion, and ‘‘Faces in the Wild’’ showed that the adaptive kernels can provide statistically significant improvements on ordinary convolution kernels. A segmentation experiment in the Oxford-Pets dataset demonstrated that replacing ordinary convolution layers in a U-shaped network with 7 × 7 adaptive layers can improve its learning performance and ability to generalize. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey programme | en_US |
dc.description.sponsorship | Isik University | en_US |
dc.description.sponsorship | NVIDIA | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Tek, F. B., Çam, İ. & Karlı, D. (2021). Adaptive convolution kernel for artificial neural networks. Journal of Visual Communication and Image Representation, 75, 1-11.doi:10.1016/j.jvcir.2020.103015 | en_US |
dc.identifier.doi | 10.1016/j.jvcir.2020.103015 | |
dc.identifier.endpage | 11 | |
dc.identifier.issn | 1047-3203 | |
dc.identifier.issn | 1095-9076 | |
dc.identifier.scopus | 2-s2.0-85099235848 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 1 | |
dc.identifier.uri | https://hdl.handle.net/11729/3075 | |
dc.identifier.uri | http://dx.doi.org/10.1016/j.jvcir.2020.103015 | |
dc.identifier.volume | 75 | |
dc.identifier.wos | WOS:000633494400002 | |
dc.identifier.wosquality | Q2 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Science Citation Index Expanded (SCI-EXPANDED) | en_US |
dc.institutionauthor | Tek, Faik Boray | en_US |
dc.institutionauthor | Çam, İlker | en_US |
dc.institutionauthor | Karlı, Deniz | en_US |
dc.institutionauthorid | 0000-0002-8649-6013 | |
dc.institutionauthorid | 0000-0002-5639-0648 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | Academic Press Inc. | en_US |
dc.relation.ispartof | Journal of Visual Communication and Image Representation | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Adaptive convolution | en_US |
dc.subject | Image classification | en_US |
dc.subject | Multi-scale convolution | en_US |
dc.subject | Residual networks | en_US |
dc.subject | Backpropagation | en_US |
dc.subject | Classification (of information) | en_US |
dc.subject | Convolution | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Deep neural networks | en_US |
dc.subject | Image enhancement | en_US |
dc.subject | Learning systems | en_US |
dc.subject | Network layers | en_US |
dc.subject | Adaptive kernels | en_US |
dc.subject | Classification datasets | en_US |
dc.subject | Convolution kernel | en_US |
dc.subject | Convolutional kernel | en_US |
dc.subject | Gaussian envelope | en_US |
dc.subject | Learning performance | en_US |
dc.subject | NET architecture | en_US |
dc.subject | Two-layer network | en_US |
dc.subject | Multilayer neural networks | en_US |
dc.title | Adaptive convolution kernel for artificial neural networks | en_US |
dc.type | Article | en_US |