Discrete dynamical systems over double cross-product Lie groupoids

Küçük Resim Yok

Tarih

2021-03

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

World Scientific

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Discrete Euler-Lagrange equations are studied over double cross product Lie groupoids. As such, a geometric framework for the local analysis of a discrete dynamical system is established. The arguments are elucidated on the local discrete dynamics of a gauge groupoid. The discrete Elroy's beanie is studied as a physical example.

Açıklama

Anahtar Kelimeler

Discrete dynamics, Lie groupoids, Matched pairs, Double cross product, Lagrangian mechanics, Hopf-Algebras, Euler-Poincare, Bicrossproduct, Reduction, Symmetry

Kaynak

International Journal Of Geometric Methods In Modern Physics

WoS Q Değeri

Q2

Scopus Q Değeri

Q3

Cilt

18

Sayı

4

Künye

Esen, O. & Sütlü, S. (2021). Discrete dynamical systems over double cross-product Lie groupoids. International Journal Of Geometric Methods In Modern Physics, 18(4). doi:10.1142/S0219887821500572