Generating multi-atom entangled W states via light-matter interface based fusion mechanism
Yükleniyor...
Dosyalar
Tarih
2015-11-09
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Nature Publishing Group
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
W state is a key resource in quantum communication. Fusion technology has been proven to be a good candidate for preparing a large-size W state from two or more small-size W states in linear optical system. It is of great importance to study how to fuse W states via light-matter interface. Here we show that it is possible to prepare large-size W-state networks using a fusion mechanism in cavity QED system. The detuned interaction between three atoms and a vacuum cavity mode constitute the main fusion mechanism, based on which two or three small-size atomic W states can be fused into a larger-size W state. If no excitation is detected from those three atoms, the remaining atoms are still in the product of two or three new W states, which can be re-fused. The complicated Fredkin gate used in the previous fusion schemes is avoided here. W states of size 2 can be fused as well. The feasibility analysis shows that our fusion processes maybe implementable with the current technology. Our results demonstrate how the light-matter interaction based fusion mechanism can be realized, and may become the starting point for the fusion of multipartite entanglement in cavity QED system.
Açıklama
Anahtar Kelimeler
Quantum fisher information, Cross-kerr nonlinearities, Bell theorem, Optical microcavities, Coupled system, Toffoli gate, Cryptography, Qubits, Scheme, Communication
Kaynak
Scientific Reports
WoS Q Değeri
Q2
Scopus Q Değeri
Q1
Cilt
5
Sayı
Künye
Zang, X., Yang, M., Özaydın, F., Song, W. & Cao, Z. (2015). Generating multi-atom entangled W states via light-matter interface based fusion mechanism. Scientific Reports, 5, 1-9. doi:10.1038/srep16245