Neural network steering control algorithm for autonomous ground vehicles having signal time delay
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
An adaptive neural network–based steering control algorithm is proposed for yaw rate tracking of autonomous ground vehicles with in-vehicle signal time delay. The control system consists of two neural networks: the observer neural network and the controller neural network. The observer neural network adapts itself to the system dynamics during the training phase. Once trained, the observer neural network cooperates with the controller neural network, which constantly adapts itself during the control task. In this way, an adaptive and intelligent control structure is proposed. Through simulation studies, it has been shown that while a proportional-integral-derivative type steering controller fails to perform its control task in case of steering signal delay, the proposed control algorithm manages to adapt itself according to the control problem and achieves reference yaw rate tracking. The robustness of the control algorithm according to the signal delay magnitude has been demonstrated by simulation studies. A rigorous Lyapunov stability analysis of the control algorithm is also presented.