Design of a high-rise reinforced concrete building according to TBDY 2018

dc.authorid0009-0009-2939-9813
dc.authorid0009-0009-2939-9813en_US
dc.contributor.advisorUmut, Önderen_US
dc.contributor.authorQaiqab, Obaidallah Ahmed Balghait Alien_US
dc.contributor.otherIşık Üniversitesi, Lisansüstü Eğitim Enstitüsü, İnşaat Mühendisliği Yüksek Lisans Programıen_US
dc.date.accessioned2023-09-11T10:15:18Z
dc.date.available2023-09-11T10:15:18Z
dc.date.issued2023-04-05
dc.departmentIşık Üniversitesi, Lisansüstü Eğitim Enstitüsü, İnşaat Mühendisliği Yüksek Lisans Programıen_US
dc.descriptionText in English ; Abstract: English and Turkishen_US
dc.descriptionIncludes bibliographical references (leaves 146-147)en_US
dc.descriptionxx, 157 leavesen_US
dc.description.abstractDue to the demand for additional livable space and lodging options for the urban population, towering structures (high-rises) are becoming more and more necessary as the world's population grows every day. For generations, people have had the need to construct big buildings. Tall structures used to be extremely difficult to construct because of a lack of seismic knowledge and computer technology. However, modern advancements in computer technology, amenities like lifts, and engineers' familiarity with earthquake movements are the main factors in the success of tall skyscraper construction. Tall structures are a problem in both industrialized and developing nations today. Engineers now employ norms and guidelines created for normal buildings for tall skyscrapers. Engineers are limited in their ability to apply easy structural solutions for tall buildings since these laws are based on the structure's strength-based design and linear elastic analysis. Engineers may choose earthquake-resistant designs and conduct more complex analyses thanks to the emergence of non-linear behavior in structural systems. Due to a lack of understanding of the non-linear behavior of buildings and the adoption of laws based on the strength that is developed under seismic threat, engineers are forced to build low-rise and mid-rise structures. According to earthquake legislation from 2007 that is largely recognized until 2019, high-rise buildings are not distinguishable from other structures and are equated with them. The Turkish Building Earthquake Regulation is published in 2019, and it analyzed high-rise buildings separately from other types of construction. High-rise structures are divided into three separate level classes under the Turkish Building Earthquake Regulation, and it has been determined to check them in accordance with that content when it comes to design issues. There are five chapters in the research. The introduction is in the first chapter, while information on earthquake-resistant design is in the second. The third chapter is mostly made up of the variables that will be used in this thesis, such the projected computation and design of high-rise structures in the Turkish Building Earthquake Regulation in 2019. The fourth chapter compares the outcomes of linear calculations with the Turkish Building Earthquake Regulation from 2007 and looks at the performance analysis and design of buildings up to 94 meters tall and 30 floors in compliance with the Turkish Building Earthquake Regulation in 2019. A list of resources and annexures follows the fifth chapter's conclusion part.en_US
dc.description.abstractKent nüfusunun ek yaşanabilir alan ve barınma seçeneklerine olan talebi nedeniyle, dünya nüfusunun her geçen gün artmasıyla birlikte yüksek yapılar (yüksek yapılar) giderek daha gerekli hale gelmektedir. Nesiller boyunca insanların büyük binalar inşa etme ihtiyacı olmuştur. Sismik bilgi ve bilgisayar teknolojisi eksikliği nedeniyle yüksek yapıların inşa edilmesi eskiden son derece zordu. Bununla birlikte, bilgisayar teknolojisindeki modern gelişmeler, asansörler gibi olanaklar ve mühendislerin deprem hareketlerine aşinalığı, yüksek gökdelen inşaatının başarısındaki ana faktörlerdi. Yüksek yapılar bugün hem sanayileşmiş hem de gelişmekte olan ülkelerde bir sorundur. Mühendisler artık normal binalar için yüksek gökdelenler için oluşturulan normları ve yönergeleri kullanıyor. Bu yönetmelikler, yapıların mukavemete dayalı tasarımına ve doğrusal elastik analizine dayandığından, mühendislerin yüksek binalar için basit ve anlaşılır yapısal çözümleri kullanma becerileri sınırlıdır. Yapı sistemlerinde doğrusal olmayan davranışın ortaya çıkması sayesinde mühendisler depreme dayanıklı tasarımları tercih edebilmekte ve daha karmaşık analizler yapabilmektedir. Mühendisler, yapıların doğrusal olmayan davranışlarının bilinmemesi ve sismik tehlike altında oluşan dayanıma dayalı düzenlemelerin kullanılması nedeniyle az katlı ve orta katlı yapılar inşa etmek zorunda kalmışlardır. Yüksek binalar diğer yapılardan ayırt edilmemekte ve 2007 yılından 2019 yılına kadar yaygın olarak kabul gören deprem kanunlarına göre diğer yapılarla eş tutulmaktadır. Yapıların Yüksek yapılar, Türkiye Bina Deprem Yönetmeliği'nde üç ayrı kot sınıfına ayrılmaktadır ve tasarım konularında bu içeriğe göre kontrol edilmesi belirlenmiştir. Bu çalışma, betonarme perde duvar ve çerçeve sistemleri ile yapılan yüksek yapılar için lineer hesapların sonuçlarını ve dikkate alınan faktörleri incelemek amacıyla 2019 (yeni) deprem yönetmeliği ile 2007 deprem yönetmeliğini karşılaştırmaktadır. Analiz sırasında. Çalışma beş bölüme ayrılmıştır. Birinci bölümde giriş, ikinci bölümde ise deprem dayanıklı tasarım hakkında bilgiler yer almaktadır. Üçüncü bölüm çoğunlukla, 2019 yılında Türkiye Bina Deprem Yönetmeliği'nde öngörülen yüksek yapıların hesaplanması ve tasarımı gibi bu tezde kullanılacak değişkenlerden oluşmaktadır. Dördüncü bölüm, 94 metre yüksekliğindeki yapıların performans analizi ve tasarımını incelemektedir. Ve 2019 Türkiye Bina Deprem Yönetmeliği'ne göre 30 kat ve 2007 Türkiye Bina Deprem Yönetmeliği ile lineer hesaplamaların sonuçlarını karşılaştırmaktadır. Beşinci bölümün sonuç bölümünü kaynaklar ve ekler listesi takip etmektedir.en_US
dc.description.tableofcontentsHistorical Development of Tall Buildings throughout Historyen_US
dc.description.tableofcontentsHistorical Development of Tall Buildings in Turkeyen_US
dc.description.tableofcontentsEARTHQUAKE-RESİSTANT DESİGNen_US
dc.description.tableofcontentsBuilding Design Using Earthquake-Resistant Strategiesen_US
dc.description.tableofcontentsDesign Principles for Earthquake-Resistant Buildingsen_US
dc.description.tableofcontentsDesign Based On Capacityen_US
dc.description.tableofcontentsDesign Based On Performanceen_US
dc.description.tableofcontentsAcceptable Level of Risk and Performanceen_US
dc.description.tableofcontentsDesign of High-Rise Structuresen_US
dc.description.tableofcontentsIstanbul's Earthquake-Resistant High-Rise Building Codeen_US
dc.description.tableofcontentsThe Design Spectrum for Earthquakesen_US
dc.description.tableofcontentsPerformance levels of tall buildingsen_US
dc.description.tableofcontentsANALYSIS AND DESIGN CODES OF TALL BUILDINGen_US
dc.description.tableofcontentsHigh-Building Carrier Systemsen_US
dc.description.tableofcontentsRigid Frame Systemsen_US
dc.description.tableofcontentsBraced frame and shear-walled frame systemsen_US
dc.description.tableofcontentsOutrigger Systemsen_US
dc.description.tableofcontentsFramed-Tube Systemsen_US
dc.description.tableofcontentsBraced tube systemsen_US
dc.description.tableofcontentsBundled Tube Systemsen_US
dc.description.tableofcontentsDesign of a High-Rise Building According To TBDY 2018en_US
dc.description.tableofcontentsEarthquake Effect Definitionen_US
dc.description.tableofcontentsEarthquake Levelsen_US
dc.description.tableofcontentsEarthquake Ground Motion Spectrum Definitionen_US
dc.description.tableofcontentsTime Domain Definition of Earthquake Effecten_US
dc.description.tableofcontentsMaterial Identificationen_US
dc.description.tableofcontentsModels of Concreteen_US
dc.description.tableofcontentsModels of Reinforced Steelen_US
dc.description.tableofcontentsTall Building's Performance Goalsen_US
dc.description.tableofcontentsDesign Phase-Ien_US
dc.description.tableofcontentsCarrier System Modelingen_US
dc.description.tableofcontentsCombinations of Earthquake Loadsen_US
dc.description.tableofcontentsCalculation of Earthquakesen_US
dc.description.tableofcontentsSizing the Carrier Systemen_US
dc.description.tableofcontentsDesign Phase-IIen_US
dc.description.tableofcontentsCarrier System Modelingen_US
dc.description.tableofcontentsCalculation of Earthquakesen_US
dc.description.tableofcontentsEvaluation of Performanceen_US
dc.description.tableofcontentsDesign Phase-IIIen_US
dc.description.tableofcontentsCarrier System Modelingen_US
dc.description.tableofcontentsCalculation of Earthquakesen_US
dc.description.tableofcontentsEvaluation of performanceen_US
dc.description.tableofcontentsFinalization of designen_US
dc.description.tableofcontentsCASE STUDY: DESİGN OF A HİGH-RİSE RC BUİLDİNG ACCORDİNG TO TBSC 2018en_US
dc.description.tableofcontentsGeneral Information about the Buildingen_US
dc.description.tableofcontentsStructural system information of the buildingen_US
dc.description.tableofcontentsDetermining the Performance Levels of the Buildingen_US
dc.description.tableofcontentsMaterial Propertiesen_US
dc.description.tableofcontentsEarthquake Parametersen_US
dc.description.tableofcontentsLoad and Load Combinationsen_US
dc.description.tableofcontentsStructural System Behavior Coefficient and Strength Excess Coefficienten_US
dc.description.tableofcontentsEarthquake Load Reduction Coefficienten_US
dc.description.tableofcontentsEffective Section Rigiditiesen_US
dc.description.tableofcontentsStory Masses and Weightsen_US
dc.description.tableofcontentsDetermination of Linear Calculation Methoden_US
dc.description.tableofcontentsScaling Mod Combine Accountsen_US
dc.description.tableofcontentsCalculation of Relative Story Offsetsen_US
dc.description.tableofcontentsControl of Second-Order Effectsen_US
dc.description.tableofcontentsReinforcement of Structural Systemen_US
dc.description.tableofcontentsColumn Reinforcementsen_US
dc.description.tableofcontentsShear Walls Reinforcementen_US
dc.description.tableofcontentsBeams Reinforcementen_US
dc.description.tableofcontentsCapacity Calculation of Carrier System Elementsen_US
dc.description.tableofcontentsDemand/Capacity Ratios of Structural System Elementsen_US
dc.description.tableofcontentsComparison of TBDY 2018 and DBYBHY 2007 Analysisen_US
dc.description.tableofcontentsDBYBHY 2007 Earthquake Parametersen_US
dc.description.tableofcontentsComparison of Horizontal Elastic Spectraen_US
dc.description.tableofcontentsComparison of Relative Story Offsetsen_US
dc.description.tableofcontentsComparison of Internal Forcesen_US
dc.description.tableofcontentsDetermination of Elastic Spectrumen_US
dc.description.tableofcontentsRules for Design Phase IIIen_US
dc.description.tableofcontentsSelecting Earthquake Recordsen_US
dc.description.tableofcontentsScaling Earthquake Recordsen_US
dc.description.tableofcontentsEvaluation of Phase III Analysis Resultsen_US
dc.description.tableofcontentsHigh-rise buildings completed in Turkeyen_US
dc.description.tableofcontentsBuilding class minimum performance objective relationshipen_US
dc.description.tableofcontentsSeismic Design Classes given in TBDY 2018en_US
dc.description.tableofcontentsBuilding height classification (BYS) given in TBDY 2018en_US
dc.description.tableofcontentsThe Importance Factor I given in TBDY 2018en_US
dc.description.tableofcontentsEarthquake Ground Motion Levels given in TBDY 2018en_US
dc.description.tableofcontentsFs Table is given in TBDY 2018en_US
dc.description.tableofcontentsF1 Table Is given In TBDY 2018en_US
dc.description.tableofcontentsInformation about reinforcement steelen_US
dc.description.tableofcontentsPerformance Objective and Analysis Phases for Tall Buildings given in TBDY 2018en_US
dc.description.tableofcontentsPerformance targets and design procedures for new buildings given in TBDY 2018en_US
dc.description.tableofcontentsRigidity factors for Strength-based design (DGT) given in TBDY 2018en_US
dc.description.tableofcontentsLive load participation coefficient given in TBDY 2018en_US
dc.description.tableofcontentsEffective stiffness of concrete members for Design Phase-II given in TBDY 2018en_US
dc.description.tableofcontentsPredicted Strengths of materialsen_US
dc.description.tableofcontentsFrame element's names and dimensions in the buildingen_US
dc.description.tableofcontentsFs Table is given in TBDY 2018en_US
dc.description.tableofcontentsF1 Table Is given In TBDY 2018en_US
dc.description.tableofcontentsSeismic Design Classesen_US
dc.description.tableofcontentsBuilding height classification (BYS) given in TBDY 2018en_US
dc.description.tableofcontentsPerformance targets and design procedures for new buildingsen_US
dc.description.tableofcontentsStructural system coefficient of behavior, coefficient of excess strengthen_US
dc.description.tableofcontentsRigidity factors for Strength-base design (DGT)en_US
dc.description.tableofcontentsStory weights and story massesen_US
dc.description.tableofcontentsPeriod and mass participation ratesen_US
dc.description.tableofcontentsX-X direction relative story driftsen_US
dc.description.tableofcontentsY-Y direction relative storey driftsen_US
dc.description.tableofcontentsX-X direction second order calculationen_US
dc.description.tableofcontentsY-Y direction second order calculationen_US
dc.description.tableofcontentsShear wall longitudinal reinforcementsen_US
dc.description.tableofcontentsAll selected beam reinforcementsen_US
dc.description.tableofcontentsAverage strength of materialsen_US
dc.description.tableofcontentsEffective section rigidities to be applied in the Design Phase IIen_US
dc.description.tableofcontentsBeam capacity valuesen_US
dc.description.tableofcontentsCoumn capacity valuesen_US
dc.description.tableofcontentsShear wall capacity valuesen_US
dc.description.tableofcontentsEffective ground acceleration coefficientsen_US
dc.description.tableofcontentsSpectrum characteristic periodsen_US
dc.description.tableofcontentsAverage strength of materialsen_US
dc.description.tableofcontentsRigidity factors for Strength-base design (DGT)en_US
dc.description.tableofcontentsSelected earthquake recordsen_US
dc.description.tableofcontentsCross-sectional damage limits of structural elementsen_US
dc.description.tableofcontentsShear wall strain limit valuesen_US
dc.description.tableofcontentsBeam maximum shear forcesen_US
dc.description.tableofcontentsBeam plastic rotation ratesen_US
dc.description.tableofcontentsColumn maximum shear forcesen_US
dc.description.tableofcontentsColumn plastic rotation ratesen_US
dc.description.tableofcontentsShear wall maximum shear forcesen_US
dc.description.tableofcontentsConcrete strain rates of Shear wallen_US
dc.description.tableofcontentsReinforcing unit strain rates of Shear Wallsen_US
dc.description.tableofcontentsHome Insurance Building, Chicagoen_US
dc.description.tableofcontentsIngalls Building, Cincinnatien_US
dc.description.tableofcontentsBurj Khalifa, Dubaien_US
dc.description.tableofcontentsJeddah Toweren_US
dc.description.tableofcontentsFlowchart for FEMA 749 performance selectionen_US
dc.description.tableofcontentsPerformance Objectives for buildingsen_US
dc.description.tableofcontentsPerformance levels and regions defined in ISDCTB -2008en_US
dc.description.tableofcontentsElastic design spectrum curve according to IYBDYen_US
dc.description.tableofcontentsStructural systems based on the number of storiesen_US
dc.description.tableofcontentsElastic design spectrum curve is given in TBDY 2018en_US
dc.description.tableofcontentsPush-over curve of elastic-perfectly plastic EPPen_US
dc.description.tableofcontentsPush-over curve of elastic displacementen_US
dc.description.tableofcontentsThe typical stress-strain curve for FRP-confined concrete with strain hardeningen_US
dc.description.tableofcontentsStress-strain diagram of reinforced steelen_US
dc.description.tableofcontentsSpecial earthquake stirrups and crosstiesen_US
dc.description.tableofcontentsDesign shear force in beamsen_US
dc.description.tableofcontentsShear wall design Flexure momentsen_US
dc.description.tableofcontentsShear walls body and end reinforcementsen_US
dc.description.tableofcontentsRayleigh damping functionen_US
dc.description.tableofcontentsShows the story planen_US
dc.description.tableofcontents3D view of the entire structureen_US
dc.description.tableofcontentsThe building's locationen_US
dc.description.tableofcontentsCreep calculation of vertical story displacementsen_US
dc.description.tableofcontentsWind calculation maximum floor displacementsen_US
dc.description.tableofcontentsDD-2 earthquake level horizontal elastic design acceleration spectrumen_US
dc.description.tableofcontentsDD-2 earthquake level vertical elastic design acceleration spectrumen_US
dc.description.tableofcontentsDD-2 earthquake level reduced horizontal elastic design acceleration spectrumen_US
dc.description.tableofcontentsThe relative story drifts in X-X directionsen_US
dc.description.tableofcontentsRelative story drifts in Y-Y directionsen_US
dc.description.tableofcontentsReinforced concrete elementsen_US
dc.description.tableofcontentsReinforcement percentages of columns from the Sap2000 programen_US
dc.description.tableofcontentsReinforcement area of columns from the Sap2000 programen_US
dc.description.tableofcontents95 cm x 95 cm Column Reinforcements and Stirrupsen_US
dc.description.tableofcontents85 cm x 85 cm Column Reinforcements and Stirrupsen_US
dc.description.tableofcontentsDD-4 earthquake level horizontal elastic design acceleration spectrumen_US
dc.description.tableofcontentsDD-4 earthquake level vertical elastic design acceleration spectrumen_US
dc.description.tableofcontents50/80 beam moment capacity curveen_US
dc.description.tableofcontents45/65 beam shear force capacity curveen_US
dc.description.tableofcontentsCarrier system element nomenclatureen_US
dc.description.tableofcontentsShear force D/C ratios of 1st floor beamsen_US
dc.description.tableofcontentsShear force D/C ratios of 11th floor beamsen_US
dc.description.tableofcontentsShear force D/C ratios of 20th floor beamsen_US
dc.description.tableofcontentsShear force D/C ratios of 30th floor beamsen_US
dc.description.tableofcontentsMoment D/C ratios of 1ststory beamsen_US
dc.description.tableofcontentsMoment D/C ratios of 11th story beamsen_US
dc.description.tableofcontentsMoment D/C ratios of 20th story beamsen_US
dc.description.tableofcontentsMoment D/C ratios of 30thstory beamsen_US
dc.description.tableofcontentsShear walls shear force D/C ratiosen_US
dc.description.tableofcontentsShear walls P-M-M D/C ratiosen_US
dc.description.tableofcontents1st floor column shear force D/C ratiosen_US
dc.description.tableofcontents11th floor column shear force D/C ratiosen_US
dc.description.tableofcontents20thstory column shear force D/C ratiosen_US
dc.description.tableofcontents30th floor column shear force D/C ratiosen_US
dc.description.tableofcontents1st floor column P-M-M D/C ratiosen_US
dc.description.tableofcontents11th floor column P-M-M D/C ratiosen_US
dc.description.tableofcontents20th floor column P-M-M D/C ratiosen_US
dc.description.tableofcontents30th floor column P-M-M D/C ratiosen_US
dc.description.tableofcontentsComparison of 2007 and 2018 X-Directional Seismic Forcesen_US
dc.description.tableofcontentsComparison of 2007 and 2018 Y Direction Seismic Forcesen_US
dc.description.tableofcontentsHorizontal elastic spectrum comparisonen_US
dc.description.tableofcontentsReduced horizontal elastic spectrum comparisonen_US
dc.description.tableofcontentsComparison of X-direction-enabled relative story offsetsen_US
dc.description.tableofcontentsComparison of y-direction-enabled relative story offsetsen_US
dc.description.tableofcontentsComparison of X-direction story shear forcesen_US
dc.description.tableofcontentsY direction story shear forcesen_US
dc.description.tableofcontentsDD-1 earthquake level horizontal elastic design acceleration spectrumen_US
dc.description.tableofcontentsDD-1 earthquake level vertical elastic design acceleration spectrumen_US
dc.description.tableofcontentsEarthquake records are defined in the programen_US
dc.description.tableofcontentsScaled earthquake recordsen_US
dc.description.tableofcontentsAverage of resultant spectraen_US
dc.description.tableofcontentsRelative story drifts (maximum of 22 analyses)en_US
dc.identifier.citationQaiqab, O. A. B. A. (2023). Design of a high-rise reinforced concrete building according to TBDY 2018. İstanbul: Işık Üniversitesi Lisansüstü Eğitim Enstitüsü.en_US
dc.identifier.urihttps://hdl.handle.net/11729/5705
dc.institutionauthorQaiqab, Obaidallah Ahmed Balghait Alien_US
dc.language.isoenen_US
dc.publisherIşık Üniversitesien_US
dc.relation.publicationcategoryTezen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectTall buildingen_US
dc.subjectEarthquake effectsen_US
dc.subjectPerformance analysisen_US
dc.subjectEarthquake codeen_US
dc.subjectYüksek binaen_US
dc.subjectDeprem etkilerien_US
dc.subjectPerformans analizien_US
dc.subjectDeprem yönetmeliğien_US
dc.subject.lccTA658.44 .Q1 2023
dc.subject.lcshBuildings, Reinforced concrete -- Turkey -- Earthquake effects.en_US
dc.subject.lcshEarthquake Resistant Design.en_US
dc.subject.lcshTall buildings -- History -- Turkey.en_US
dc.subject.lcshBuildings -- Earthquake effects -- Turkey -- Design.en_US
dc.subject.lcshBuilding laws -- Turkey.en_US
dc.subject.lcshEarthquakes -- Turkey -- Regulations.en_US
dc.subject.lcshNatural disasters -- Law and legislation -- Turkey.en_US
dc.titleDesign of a high-rise reinforced concrete building according to TBDY 2018en_US
dc.title.alternativeBetonarme yüksek bir binanın TBDY 2018'e göre tasarımıen_US
dc.typeMaster Thesisen_US
dspace.entity.typePublication

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Design_of_a_high_rise_reinforced_concrete_building_according_to_TBDY_2018.pdf
Boyut:
4.61 MB
Biçim:
Adobe Portable Document Format
Açıklama:
MasterThesis
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: