Design of a high-rise reinforced concrete building according to TBDY 2018
dc.authorid | 0009-0009-2939-9813 | |
dc.authorid | 0009-0009-2939-9813 | en_US |
dc.contributor.advisor | Umut, Önder | en_US |
dc.contributor.author | Qaiqab, Obaidallah Ahmed Balghait Ali | en_US |
dc.contributor.other | Işık Üniversitesi, Lisansüstü Eğitim Enstitüsü, İnşaat Mühendisliği Yüksek Lisans Programı | en_US |
dc.date.accessioned | 2023-09-11T10:15:18Z | |
dc.date.available | 2023-09-11T10:15:18Z | |
dc.date.issued | 2023-04-05 | |
dc.department | Işık Üniversitesi, Lisansüstü Eğitim Enstitüsü, İnşaat Mühendisliği Yüksek Lisans Programı | en_US |
dc.description | Text in English ; Abstract: English and Turkish | en_US |
dc.description | Includes bibliographical references (leaves 146-147) | en_US |
dc.description | xx, 157 leaves | en_US |
dc.description.abstract | Due to the demand for additional livable space and lodging options for the urban population, towering structures (high-rises) are becoming more and more necessary as the world's population grows every day. For generations, people have had the need to construct big buildings. Tall structures used to be extremely difficult to construct because of a lack of seismic knowledge and computer technology. However, modern advancements in computer technology, amenities like lifts, and engineers' familiarity with earthquake movements are the main factors in the success of tall skyscraper construction. Tall structures are a problem in both industrialized and developing nations today. Engineers now employ norms and guidelines created for normal buildings for tall skyscrapers. Engineers are limited in their ability to apply easy structural solutions for tall buildings since these laws are based on the structure's strength-based design and linear elastic analysis. Engineers may choose earthquake-resistant designs and conduct more complex analyses thanks to the emergence of non-linear behavior in structural systems. Due to a lack of understanding of the non-linear behavior of buildings and the adoption of laws based on the strength that is developed under seismic threat, engineers are forced to build low-rise and mid-rise structures. According to earthquake legislation from 2007 that is largely recognized until 2019, high-rise buildings are not distinguishable from other structures and are equated with them. The Turkish Building Earthquake Regulation is published in 2019, and it analyzed high-rise buildings separately from other types of construction. High-rise structures are divided into three separate level classes under the Turkish Building Earthquake Regulation, and it has been determined to check them in accordance with that content when it comes to design issues. There are five chapters in the research. The introduction is in the first chapter, while information on earthquake-resistant design is in the second. The third chapter is mostly made up of the variables that will be used in this thesis, such the projected computation and design of high-rise structures in the Turkish Building Earthquake Regulation in 2019. The fourth chapter compares the outcomes of linear calculations with the Turkish Building Earthquake Regulation from 2007 and looks at the performance analysis and design of buildings up to 94 meters tall and 30 floors in compliance with the Turkish Building Earthquake Regulation in 2019. A list of resources and annexures follows the fifth chapter's conclusion part. | en_US |
dc.description.abstract | Kent nüfusunun ek yaşanabilir alan ve barınma seçeneklerine olan talebi nedeniyle, dünya nüfusunun her geçen gün artmasıyla birlikte yüksek yapılar (yüksek yapılar) giderek daha gerekli hale gelmektedir. Nesiller boyunca insanların büyük binalar inşa etme ihtiyacı olmuştur. Sismik bilgi ve bilgisayar teknolojisi eksikliği nedeniyle yüksek yapıların inşa edilmesi eskiden son derece zordu. Bununla birlikte, bilgisayar teknolojisindeki modern gelişmeler, asansörler gibi olanaklar ve mühendislerin deprem hareketlerine aşinalığı, yüksek gökdelen inşaatının başarısındaki ana faktörlerdi. Yüksek yapılar bugün hem sanayileşmiş hem de gelişmekte olan ülkelerde bir sorundur. Mühendisler artık normal binalar için yüksek gökdelenler için oluşturulan normları ve yönergeleri kullanıyor. Bu yönetmelikler, yapıların mukavemete dayalı tasarımına ve doğrusal elastik analizine dayandığından, mühendislerin yüksek binalar için basit ve anlaşılır yapısal çözümleri kullanma becerileri sınırlıdır. Yapı sistemlerinde doğrusal olmayan davranışın ortaya çıkması sayesinde mühendisler depreme dayanıklı tasarımları tercih edebilmekte ve daha karmaşık analizler yapabilmektedir. Mühendisler, yapıların doğrusal olmayan davranışlarının bilinmemesi ve sismik tehlike altında oluşan dayanıma dayalı düzenlemelerin kullanılması nedeniyle az katlı ve orta katlı yapılar inşa etmek zorunda kalmışlardır. Yüksek binalar diğer yapılardan ayırt edilmemekte ve 2007 yılından 2019 yılına kadar yaygın olarak kabul gören deprem kanunlarına göre diğer yapılarla eş tutulmaktadır. Yapıların Yüksek yapılar, Türkiye Bina Deprem Yönetmeliği'nde üç ayrı kot sınıfına ayrılmaktadır ve tasarım konularında bu içeriğe göre kontrol edilmesi belirlenmiştir. Bu çalışma, betonarme perde duvar ve çerçeve sistemleri ile yapılan yüksek yapılar için lineer hesapların sonuçlarını ve dikkate alınan faktörleri incelemek amacıyla 2019 (yeni) deprem yönetmeliği ile 2007 deprem yönetmeliğini karşılaştırmaktadır. Analiz sırasında. Çalışma beş bölüme ayrılmıştır. Birinci bölümde giriş, ikinci bölümde ise deprem dayanıklı tasarım hakkında bilgiler yer almaktadır. Üçüncü bölüm çoğunlukla, 2019 yılında Türkiye Bina Deprem Yönetmeliği'nde öngörülen yüksek yapıların hesaplanması ve tasarımı gibi bu tezde kullanılacak değişkenlerden oluşmaktadır. Dördüncü bölüm, 94 metre yüksekliğindeki yapıların performans analizi ve tasarımını incelemektedir. Ve 2019 Türkiye Bina Deprem Yönetmeliği'ne göre 30 kat ve 2007 Türkiye Bina Deprem Yönetmeliği ile lineer hesaplamaların sonuçlarını karşılaştırmaktadır. Beşinci bölümün sonuç bölümünü kaynaklar ve ekler listesi takip etmektedir. | en_US |
dc.description.tableofcontents | Historical Development of Tall Buildings throughout History | en_US |
dc.description.tableofcontents | Historical Development of Tall Buildings in Turkey | en_US |
dc.description.tableofcontents | EARTHQUAKE-RESİSTANT DESİGN | en_US |
dc.description.tableofcontents | Building Design Using Earthquake-Resistant Strategies | en_US |
dc.description.tableofcontents | Design Principles for Earthquake-Resistant Buildings | en_US |
dc.description.tableofcontents | Design Based On Capacity | en_US |
dc.description.tableofcontents | Design Based On Performance | en_US |
dc.description.tableofcontents | Acceptable Level of Risk and Performance | en_US |
dc.description.tableofcontents | Design of High-Rise Structures | en_US |
dc.description.tableofcontents | Istanbul's Earthquake-Resistant High-Rise Building Code | en_US |
dc.description.tableofcontents | The Design Spectrum for Earthquakes | en_US |
dc.description.tableofcontents | Performance levels of tall buildings | en_US |
dc.description.tableofcontents | ANALYSIS AND DESIGN CODES OF TALL BUILDING | en_US |
dc.description.tableofcontents | High-Building Carrier Systems | en_US |
dc.description.tableofcontents | Rigid Frame Systems | en_US |
dc.description.tableofcontents | Braced frame and shear-walled frame systems | en_US |
dc.description.tableofcontents | Outrigger Systems | en_US |
dc.description.tableofcontents | Framed-Tube Systems | en_US |
dc.description.tableofcontents | Braced tube systems | en_US |
dc.description.tableofcontents | Bundled Tube Systems | en_US |
dc.description.tableofcontents | Design of a High-Rise Building According To TBDY 2018 | en_US |
dc.description.tableofcontents | Earthquake Effect Definition | en_US |
dc.description.tableofcontents | Earthquake Levels | en_US |
dc.description.tableofcontents | Earthquake Ground Motion Spectrum Definition | en_US |
dc.description.tableofcontents | Time Domain Definition of Earthquake Effect | en_US |
dc.description.tableofcontents | Material Identification | en_US |
dc.description.tableofcontents | Models of Concrete | en_US |
dc.description.tableofcontents | Models of Reinforced Steel | en_US |
dc.description.tableofcontents | Tall Building's Performance Goals | en_US |
dc.description.tableofcontents | Design Phase-I | en_US |
dc.description.tableofcontents | Carrier System Modeling | en_US |
dc.description.tableofcontents | Combinations of Earthquake Loads | en_US |
dc.description.tableofcontents | Calculation of Earthquakes | en_US |
dc.description.tableofcontents | Sizing the Carrier System | en_US |
dc.description.tableofcontents | Design Phase-II | en_US |
dc.description.tableofcontents | Carrier System Modeling | en_US |
dc.description.tableofcontents | Calculation of Earthquakes | en_US |
dc.description.tableofcontents | Evaluation of Performance | en_US |
dc.description.tableofcontents | Design Phase-III | en_US |
dc.description.tableofcontents | Carrier System Modeling | en_US |
dc.description.tableofcontents | Calculation of Earthquakes | en_US |
dc.description.tableofcontents | Evaluation of performance | en_US |
dc.description.tableofcontents | Finalization of design | en_US |
dc.description.tableofcontents | CASE STUDY: DESİGN OF A HİGH-RİSE RC BUİLDİNG ACCORDİNG TO TBSC 2018 | en_US |
dc.description.tableofcontents | General Information about the Building | en_US |
dc.description.tableofcontents | Structural system information of the building | en_US |
dc.description.tableofcontents | Determining the Performance Levels of the Building | en_US |
dc.description.tableofcontents | Material Properties | en_US |
dc.description.tableofcontents | Earthquake Parameters | en_US |
dc.description.tableofcontents | Load and Load Combinations | en_US |
dc.description.tableofcontents | Structural System Behavior Coefficient and Strength Excess Coefficient | en_US |
dc.description.tableofcontents | Earthquake Load Reduction Coefficient | en_US |
dc.description.tableofcontents | Effective Section Rigidities | en_US |
dc.description.tableofcontents | Story Masses and Weights | en_US |
dc.description.tableofcontents | Determination of Linear Calculation Method | en_US |
dc.description.tableofcontents | Scaling Mod Combine Accounts | en_US |
dc.description.tableofcontents | Calculation of Relative Story Offsets | en_US |
dc.description.tableofcontents | Control of Second-Order Effects | en_US |
dc.description.tableofcontents | Reinforcement of Structural System | en_US |
dc.description.tableofcontents | Column Reinforcements | en_US |
dc.description.tableofcontents | Shear Walls Reinforcement | en_US |
dc.description.tableofcontents | Beams Reinforcement | en_US |
dc.description.tableofcontents | Capacity Calculation of Carrier System Elements | en_US |
dc.description.tableofcontents | Demand/Capacity Ratios of Structural System Elements | en_US |
dc.description.tableofcontents | Comparison of TBDY 2018 and DBYBHY 2007 Analysis | en_US |
dc.description.tableofcontents | DBYBHY 2007 Earthquake Parameters | en_US |
dc.description.tableofcontents | Comparison of Horizontal Elastic Spectra | en_US |
dc.description.tableofcontents | Comparison of Relative Story Offsets | en_US |
dc.description.tableofcontents | Comparison of Internal Forces | en_US |
dc.description.tableofcontents | Determination of Elastic Spectrum | en_US |
dc.description.tableofcontents | Rules for Design Phase III | en_US |
dc.description.tableofcontents | Selecting Earthquake Records | en_US |
dc.description.tableofcontents | Scaling Earthquake Records | en_US |
dc.description.tableofcontents | Evaluation of Phase III Analysis Results | en_US |
dc.description.tableofcontents | High-rise buildings completed in Turkey | en_US |
dc.description.tableofcontents | Building class minimum performance objective relationship | en_US |
dc.description.tableofcontents | Seismic Design Classes given in TBDY 2018 | en_US |
dc.description.tableofcontents | Building height classification (BYS) given in TBDY 2018 | en_US |
dc.description.tableofcontents | The Importance Factor I given in TBDY 2018 | en_US |
dc.description.tableofcontents | Earthquake Ground Motion Levels given in TBDY 2018 | en_US |
dc.description.tableofcontents | Fs Table is given in TBDY 2018 | en_US |
dc.description.tableofcontents | F1 Table Is given In TBDY 2018 | en_US |
dc.description.tableofcontents | Information about reinforcement steel | en_US |
dc.description.tableofcontents | Performance Objective and Analysis Phases for Tall Buildings given in TBDY 2018 | en_US |
dc.description.tableofcontents | Performance targets and design procedures for new buildings given in TBDY 2018 | en_US |
dc.description.tableofcontents | Rigidity factors for Strength-based design (DGT) given in TBDY 2018 | en_US |
dc.description.tableofcontents | Live load participation coefficient given in TBDY 2018 | en_US |
dc.description.tableofcontents | Effective stiffness of concrete members for Design Phase-II given in TBDY 2018 | en_US |
dc.description.tableofcontents | Predicted Strengths of materials | en_US |
dc.description.tableofcontents | Frame element's names and dimensions in the building | en_US |
dc.description.tableofcontents | Fs Table is given in TBDY 2018 | en_US |
dc.description.tableofcontents | F1 Table Is given In TBDY 2018 | en_US |
dc.description.tableofcontents | Seismic Design Classes | en_US |
dc.description.tableofcontents | Building height classification (BYS) given in TBDY 2018 | en_US |
dc.description.tableofcontents | Performance targets and design procedures for new buildings | en_US |
dc.description.tableofcontents | Structural system coefficient of behavior, coefficient of excess strength | en_US |
dc.description.tableofcontents | Rigidity factors for Strength-base design (DGT) | en_US |
dc.description.tableofcontents | Story weights and story masses | en_US |
dc.description.tableofcontents | Period and mass participation rates | en_US |
dc.description.tableofcontents | X-X direction relative story drifts | en_US |
dc.description.tableofcontents | Y-Y direction relative storey drifts | en_US |
dc.description.tableofcontents | X-X direction second order calculation | en_US |
dc.description.tableofcontents | Y-Y direction second order calculation | en_US |
dc.description.tableofcontents | Shear wall longitudinal reinforcements | en_US |
dc.description.tableofcontents | All selected beam reinforcements | en_US |
dc.description.tableofcontents | Average strength of materials | en_US |
dc.description.tableofcontents | Effective section rigidities to be applied in the Design Phase II | en_US |
dc.description.tableofcontents | Beam capacity values | en_US |
dc.description.tableofcontents | Coumn capacity values | en_US |
dc.description.tableofcontents | Shear wall capacity values | en_US |
dc.description.tableofcontents | Effective ground acceleration coefficients | en_US |
dc.description.tableofcontents | Spectrum characteristic periods | en_US |
dc.description.tableofcontents | Average strength of materials | en_US |
dc.description.tableofcontents | Rigidity factors for Strength-base design (DGT) | en_US |
dc.description.tableofcontents | Selected earthquake records | en_US |
dc.description.tableofcontents | Cross-sectional damage limits of structural elements | en_US |
dc.description.tableofcontents | Shear wall strain limit values | en_US |
dc.description.tableofcontents | Beam maximum shear forces | en_US |
dc.description.tableofcontents | Beam plastic rotation rates | en_US |
dc.description.tableofcontents | Column maximum shear forces | en_US |
dc.description.tableofcontents | Column plastic rotation rates | en_US |
dc.description.tableofcontents | Shear wall maximum shear forces | en_US |
dc.description.tableofcontents | Concrete strain rates of Shear wall | en_US |
dc.description.tableofcontents | Reinforcing unit strain rates of Shear Walls | en_US |
dc.description.tableofcontents | Home Insurance Building, Chicago | en_US |
dc.description.tableofcontents | Ingalls Building, Cincinnati | en_US |
dc.description.tableofcontents | Burj Khalifa, Dubai | en_US |
dc.description.tableofcontents | Jeddah Tower | en_US |
dc.description.tableofcontents | Flowchart for FEMA 749 performance selection | en_US |
dc.description.tableofcontents | Performance Objectives for buildings | en_US |
dc.description.tableofcontents | Performance levels and regions defined in ISDCTB -2008 | en_US |
dc.description.tableofcontents | Elastic design spectrum curve according to IYBDY | en_US |
dc.description.tableofcontents | Structural systems based on the number of stories | en_US |
dc.description.tableofcontents | Elastic design spectrum curve is given in TBDY 2018 | en_US |
dc.description.tableofcontents | Push-over curve of elastic-perfectly plastic EPP | en_US |
dc.description.tableofcontents | Push-over curve of elastic displacement | en_US |
dc.description.tableofcontents | The typical stress-strain curve for FRP-confined concrete with strain hardening | en_US |
dc.description.tableofcontents | Stress-strain diagram of reinforced steel | en_US |
dc.description.tableofcontents | Special earthquake stirrups and crossties | en_US |
dc.description.tableofcontents | Design shear force in beams | en_US |
dc.description.tableofcontents | Shear wall design Flexure moments | en_US |
dc.description.tableofcontents | Shear walls body and end reinforcements | en_US |
dc.description.tableofcontents | Rayleigh damping function | en_US |
dc.description.tableofcontents | Shows the story plan | en_US |
dc.description.tableofcontents | 3D view of the entire structure | en_US |
dc.description.tableofcontents | The building's location | en_US |
dc.description.tableofcontents | Creep calculation of vertical story displacements | en_US |
dc.description.tableofcontents | Wind calculation maximum floor displacements | en_US |
dc.description.tableofcontents | DD-2 earthquake level horizontal elastic design acceleration spectrum | en_US |
dc.description.tableofcontents | DD-2 earthquake level vertical elastic design acceleration spectrum | en_US |
dc.description.tableofcontents | DD-2 earthquake level reduced horizontal elastic design acceleration spectrum | en_US |
dc.description.tableofcontents | The relative story drifts in X-X directions | en_US |
dc.description.tableofcontents | Relative story drifts in Y-Y directions | en_US |
dc.description.tableofcontents | Reinforced concrete elements | en_US |
dc.description.tableofcontents | Reinforcement percentages of columns from the Sap2000 program | en_US |
dc.description.tableofcontents | Reinforcement area of columns from the Sap2000 program | en_US |
dc.description.tableofcontents | 95 cm x 95 cm Column Reinforcements and Stirrups | en_US |
dc.description.tableofcontents | 85 cm x 85 cm Column Reinforcements and Stirrups | en_US |
dc.description.tableofcontents | DD-4 earthquake level horizontal elastic design acceleration spectrum | en_US |
dc.description.tableofcontents | DD-4 earthquake level vertical elastic design acceleration spectrum | en_US |
dc.description.tableofcontents | 50/80 beam moment capacity curve | en_US |
dc.description.tableofcontents | 45/65 beam shear force capacity curve | en_US |
dc.description.tableofcontents | Carrier system element nomenclature | en_US |
dc.description.tableofcontents | Shear force D/C ratios of 1st floor beams | en_US |
dc.description.tableofcontents | Shear force D/C ratios of 11th floor beams | en_US |
dc.description.tableofcontents | Shear force D/C ratios of 20th floor beams | en_US |
dc.description.tableofcontents | Shear force D/C ratios of 30th floor beams | en_US |
dc.description.tableofcontents | Moment D/C ratios of 1ststory beams | en_US |
dc.description.tableofcontents | Moment D/C ratios of 11th story beams | en_US |
dc.description.tableofcontents | Moment D/C ratios of 20th story beams | en_US |
dc.description.tableofcontents | Moment D/C ratios of 30thstory beams | en_US |
dc.description.tableofcontents | Shear walls shear force D/C ratios | en_US |
dc.description.tableofcontents | Shear walls P-M-M D/C ratios | en_US |
dc.description.tableofcontents | 1st floor column shear force D/C ratios | en_US |
dc.description.tableofcontents | 11th floor column shear force D/C ratios | en_US |
dc.description.tableofcontents | 20thstory column shear force D/C ratios | en_US |
dc.description.tableofcontents | 30th floor column shear force D/C ratios | en_US |
dc.description.tableofcontents | 1st floor column P-M-M D/C ratios | en_US |
dc.description.tableofcontents | 11th floor column P-M-M D/C ratios | en_US |
dc.description.tableofcontents | 20th floor column P-M-M D/C ratios | en_US |
dc.description.tableofcontents | 30th floor column P-M-M D/C ratios | en_US |
dc.description.tableofcontents | Comparison of 2007 and 2018 X-Directional Seismic Forces | en_US |
dc.description.tableofcontents | Comparison of 2007 and 2018 Y Direction Seismic Forces | en_US |
dc.description.tableofcontents | Horizontal elastic spectrum comparison | en_US |
dc.description.tableofcontents | Reduced horizontal elastic spectrum comparison | en_US |
dc.description.tableofcontents | Comparison of X-direction-enabled relative story offsets | en_US |
dc.description.tableofcontents | Comparison of y-direction-enabled relative story offsets | en_US |
dc.description.tableofcontents | Comparison of X-direction story shear forces | en_US |
dc.description.tableofcontents | Y direction story shear forces | en_US |
dc.description.tableofcontents | DD-1 earthquake level horizontal elastic design acceleration spectrum | en_US |
dc.description.tableofcontents | DD-1 earthquake level vertical elastic design acceleration spectrum | en_US |
dc.description.tableofcontents | Earthquake records are defined in the program | en_US |
dc.description.tableofcontents | Scaled earthquake records | en_US |
dc.description.tableofcontents | Average of resultant spectra | en_US |
dc.description.tableofcontents | Relative story drifts (maximum of 22 analyses) | en_US |
dc.identifier.citation | Qaiqab, O. A. B. A. (2023). Design of a high-rise reinforced concrete building according to TBDY 2018. İstanbul: Işık Üniversitesi Lisansüstü Eğitim Enstitüsü. | en_US |
dc.identifier.uri | https://hdl.handle.net/11729/5705 | |
dc.institutionauthor | Qaiqab, Obaidallah Ahmed Balghait Ali | en_US |
dc.language.iso | en | en_US |
dc.publisher | Işık Üniversitesi | en_US |
dc.relation.publicationcategory | Tez | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Tall building | en_US |
dc.subject | Earthquake effects | en_US |
dc.subject | Performance analysis | en_US |
dc.subject | Earthquake code | en_US |
dc.subject | Yüksek bina | en_US |
dc.subject | Deprem etkileri | en_US |
dc.subject | Performans analizi | en_US |
dc.subject | Deprem yönetmeliği | en_US |
dc.subject.lcc | TA658.44 .Q1 2023 | |
dc.subject.lcsh | Buildings, Reinforced concrete -- Turkey -- Earthquake effects. | en_US |
dc.subject.lcsh | Earthquake Resistant Design. | en_US |
dc.subject.lcsh | Tall buildings -- History -- Turkey. | en_US |
dc.subject.lcsh | Buildings -- Earthquake effects -- Turkey -- Design. | en_US |
dc.subject.lcsh | Building laws -- Turkey. | en_US |
dc.subject.lcsh | Earthquakes -- Turkey -- Regulations. | en_US |
dc.subject.lcsh | Natural disasters -- Law and legislation -- Turkey. | en_US |
dc.title | Design of a high-rise reinforced concrete building according to TBDY 2018 | en_US |
dc.title.alternative | Betonarme yüksek bir binanın TBDY 2018'e göre tasarımı | en_US |
dc.type | Master Thesis | en_US |
dspace.entity.type | Publication |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- Design_of_a_high_rise_reinforced_concrete_building_according_to_TBDY_2018.pdf
- Boyut:
- 4.61 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- MasterThesis
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: