Calculating the VC-dimension of decision trees
dc.authorid | 0000-0001-5838-4615 | |
dc.authorid | 0000-0001-7506-0321 | |
dc.contributor.author | Aslan, Özlem | en_US |
dc.contributor.author | Yıldız, Olcay Taner | en_US |
dc.contributor.author | Alpaydın, Ahmet İbrahim Ethem | en_US |
dc.date.accessioned | 2019-07-30T17:57:00Z | |
dc.date.available | 2019-07-30T17:57:00Z | |
dc.date.issued | 2009 | |
dc.department | Işık Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.description.abstract | We propose an exhaustive search algorithm that calculates the VC-dimension of univariate decision trees with binary features. The VC-dimension of the univariate decision tree with binary features depends on (i) the VC-dimension values of the left and right subtrees, (ii) the number of inputs, and (iii) the number of nodes in the tree. From a training set of example trees whose VC-dimensions are calculated by exhaustive search, we fit a general regressor to estimate the VC-dimension of any binary tree. These VC-dimension estimates are then used to get VC-generalization bounds for complexity control using SRM in decision trees, i.e., pruning. Our simulation results shows that SRM-pruning using the estimated VC-dimensions finds trees that are as accurate as those pruned using cross-validation. | en_US |
dc.description.sponsorship | Middle East Technical University and IEEE | en_US |
dc.description.sponsorship | Turkish Section | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Aslan, O., Yıldız, O. T. & Alpaydın, A. İ. E. (2009). Calculating the VC-dimension of decision trees. Paper presented at the 2009 24th International Symposium on Computer and Information Sciences, 193-198. doi:10.1109/ISCIS.2009.5291847 | en_US |
dc.identifier.doi | 10.1109/ISCIS.2009.5291847 | |
dc.identifier.endpage | 198 | |
dc.identifier.isbn | 9781424450213 | |
dc.identifier.scopus | 2-s2.0-73949117705 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 193 | |
dc.identifier.uri | https://hdl.handle.net/11729/1665 | |
dc.identifier.uri | http://dx.doi.org/10.1109/ISCIS.2009.5291847 | |
dc.identifier.wos | WOS:000275024200035 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Conference Proceedings Citation Index – Science (CPCI-S) | en_US |
dc.institutionauthor | Yıldız, Olcay Taner | en_US |
dc.institutionauthorid | 0000-0001-5838-4615 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2009 24th International Symposium on Computer and Information Sciences | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Regression | en_US |
dc.subject | Machine | en_US |
dc.subject | Binary features | en_US |
dc.subject | Cross validation | en_US |
dc.subject | Exhaustive search | en_US |
dc.subject | Exhaustive search algorithms | en_US |
dc.subject | Generalization bound | en_US |
dc.subject | Simulation result | en_US |
dc.subject | Subtrees | en_US |
dc.subject | Training sets | en_US |
dc.subject | Univariate | en_US |
dc.subject | VC-dimension | en_US |
dc.subject | Decision trees | en_US |
dc.subject | Information science | en_US |
dc.subject | Learning algorithms | en_US |
dc.subject | Reluctance motors | en_US |
dc.subject | Binary trees | en_US |
dc.subject | Training data | en_US |
dc.subject | Virtual colonoscopy | en_US |
dc.subject | Testing | en_US |
dc.subject | Predictive models | en_US |
dc.subject | Algorithm design and analysis | en_US |
dc.subject | Design optimization | en_US |
dc.subject | Regression tree analysis | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Learning (artificial intelligence) | en_US |
dc.subject | Search problems | en_US |
dc.subject | Exhaustive search algorithm | en_US |
dc.subject | Univariate decision trees | en_US |
dc.subject | General regressor | en_US |
dc.subject | VC-generalization bounds | en_US |
dc.subject | Complexity control | en_US |
dc.subject | SRM | en_US |
dc.subject | Cross-validation | en_US |
dc.subject | Vapnik-Chervonenkis theory | en_US |
dc.subject | Structural risk minimization | en_US |
dc.title | Calculating the VC-dimension of decision trees | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication |