Characteristic classes of foliations via SAYD-twisted cocycles

Yükleniyor...
Küçük Resim

Tarih

2015

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

European Mathematical Society

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

We find the first non trivial “SAYD-twisted” cyclic cocycle over the groupoid action algebra under the symmetry of the affine linear transformations of the Euclidian space. We apply the cocycle to construct a characteristic map by which we transfer the characteristic classes of transversely orientable foliations into the cyclic cohomology of the groupoid action algebra. In codimension 1, our result matches with the (only explicit) computation done by Connes–Moscovici. We carry out the explicit computation in codimension 2 to present the transverse fundamental class, the Godbillon–Vey class, and the other four residual classes as cyclic cocycles on the groupoid action algebra.

Açıklama

Anahtar Kelimeler

Connes–Moscovici Hopf algebras, Hopf cyclic cohomology, Cyclic cohomology, Weil algebra, Characteristic classes of foliations, Hopf-cyclic cohomology, Cup products, Algebras, Homology, Theorem

Kaynak

Journal of Noncommutative Geometry

WoS Q Değeri

Q2
Q2

Scopus Q Değeri

Q1

Cilt

9

Sayı

3

Künye

Rangipour, B. & Sütlü, S. S. (2015). Characteristic classes of foliations via SAYD-twisted cocycles. Journal of Noncommutative Geometry, 9(3), 965-998. doi:10.4171/JNCG/213