Odaklanan nöron
Yükleniyor...
Dosyalar
Tarih
2017-06-27
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
IEEE
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Geleneksel yapay sinir ağında topoloji eğitim sırasında değişebilecek esnekliğe sahip değildir. Ağda her bir nöron ve bağımsız bağlantı katsayıları çözüm işlevinin bir parçasıdır. Bu bildiride önerdiğimiz odaklanabilir nöron birbirine bağımlı katsayıların çekildiği bir odaklayıcı işlevden yararlanır. Nöron odak pozisyonu ve açıklığını değiştirerek aktivasyon topladığı nöronları değiştirebilir. Bu özelliği sayesinde esnek ve dinamik bir ağ topolojisi oluşturabilir ve standart geriye yayılım algoritmasıyla eğitilebilir. Yapılan deneylerde odaklanabilir nöronlarla kurulan bir ağ yapısının, tümüyle bağlı yapay sinir ağına göre daha yüksek başarı elde ettiği gözlenmiştir.
The traditional neural network topology is not flexible to change during the training process. Every neuron and it's independent weights in the network are part of the solution function. The proposed focusing neuron model utilizes inter-dependent weights produced by a focusing function. This neuron can change it's focus position and aperture. This property allows a flexible-dynamic network topology, which can be trained using conventional back-propagation algorithm. Our experiments show that focusing neuron neural networks achieve higher success than hilly connected neural networks.
The traditional neural network topology is not flexible to change during the training process. Every neuron and it's independent weights in the network are part of the solution function. The proposed focusing neuron model utilizes inter-dependent weights produced by a focusing function. This neuron can change it's focus position and aperture. This property allows a flexible-dynamic network topology, which can be trained using conventional back-propagation algorithm. Our experiments show that focusing neuron neural networks achieve higher success than hilly connected neural networks.
Açıklama
Anahtar Kelimeler
Odaklanan nöron, Yapay sinir ağı, Artificial neural network, Backpropagation, Backpropagation algorithm, Backpropagation algorithms, Biological neural networks, Cloud computing, Data handling, Dogs, Flexible dynamics, Flexible-dynamic network topology, Focus aperture, Focus position, Focus positions, Focusing, Focusing function, Focusing neuron, Focusing neuron model, Focusing neuron neural networks, Fully connected neural network, Health care, Image coding, Network, Network topology, Neural nets, Neural network topology, Neural networks, Neuron model, Neurons, Signal processing, Topology, Training process
Kaynak
WoS Q Değeri
N/A
Scopus Q Değeri
N/A
Cilt
Sayı
Künye
Çam, İ. & Tek, F. B. (2017). Odaklanan nöron focusing neuron. Paper presented at the 2017 25th Signal Processing and Communications Applications Conference, SIU 2017, 1-4. doi:10.1109/SIU.2017.7960632