Neural network as a forecasting tool for financial decision-making
dc.authorid | 0000-0001-7754-2033 | |
dc.authorid | 0000-0001-7754-2033 | en_US |
dc.contributor.advisor | Perdahçı, Nazım Ziya | en_US |
dc.contributor.author | Görgün, Onur | en_US |
dc.contributor.other | Işık Üniversitesi, Fen Bilimleri Enstitüsü, Enformasyon Teknolojileri Yüksek Lisans Programı | en_US |
dc.date.accessioned | 2016-06-03T12:48:00Z | |
dc.date.available | 2016-06-03T12:48:00Z | |
dc.date.issued | 2008-09-18 | |
dc.department | Işık Üniversitesi, Fen Bilimleri Enstitüsü, Enformasyon Teknolojileri Yüksek Lisans Programı | en_US |
dc.description | Text in English ; Abstract: English and Turkish | en_US |
dc.description | Includes bibliographical references (leaves 40-42) | en_US |
dc.description | ix, 42 leaves | en_US |
dc.description.abstract | For the last decade, machine learning techniques have been applied to financial tasks such as portfolio management, risk assessment and stock market prediction. Among these techniques artificial neural network as a machine learning algorithm is the most widely used model. In stock market environment, multi layer perceptron with backpropagation model is dominant among others in stock market prediction. This study examines the forecasting power of multi layer perceptron models for predicting the direction of ISE 100 daily index value. The results show that multi layer perceptron has a promising power in predicting the stock market trend. However, it also shows that selection of input variables is dominant factor in stock market prediction to obtain accurate results. | en_US |
dc.description.abstract | Son on yılda makine öğrenimi yöntemleri portföy yönetimi, risk değerlendirmesi ve hisse senedi piyasası öngörme gibi finansal problemleri çözmede kullanılmaktadır. Bütün modeller içerisinde yapay sinir ağı ise en fazla uygulanan yöntem olarak görülmektedir. Hisse senedi piyasalarında hata geri yayma yöntemi ile eğitilmis çok katmanlı algılayıcı baskın yapay sinir ağları modelidir. Bu çalışma çok katmanlı algılayıcıların İstanbul Menkul Kıymetler Borsası 100 endeksinin yönünün tahmininde ki gücünü incelemektedir. Sonuçlar çok katmanlı algılayıcının borsa piyasası tahmini konusunda gelecek vadeden bir yapı oldugunu ortaya koymaktadır. Ancak, doğru girdi değişkeni seçiminin isabetli tahmin yapma konusunda ne kadar etkili olduğu da vurgulanmaktadır. | en_US |
dc.description.tableofcontents | Neural Networks in Financial Tasks | en_US |
dc.description.tableofcontents | Prediction of Stock Market | en_US |
dc.description.tableofcontents | Machine Learning | en_US |
dc.description.tableofcontents | What is Artificial Neural Network | en_US |
dc.description.tableofcontents | Artificial Neuron | en_US |
dc.description.tableofcontents | Issues in Artificial Neural Network Modeling for Forecasting | en_US |
dc.description.tableofcontents | Data Specific Issues | en_US |
dc.description.tableofcontents | Selection of Input Variables | en_US |
dc.description.tableofcontents | Data Preprocessing | en_US |
dc.description.tableofcontents | Sensitivity Analysis | en_US |
dc.description.tableofcontents | Training, Validation and Test Samples | en_US |
dc.description.tableofcontents | Neural Network Architecture Specific Issues | en_US |
dc.description.tableofcontents | Network Architecture | en_US |
dc.description.tableofcontents | Number of Nodes in Each Layer | en_US |
dc.description.tableofcontents | Activation Function | en_US |
dc.description.tableofcontents | Training Algorithm | en_US |
dc.description.tableofcontents | Performance Measures | en_US |
dc.description.tableofcontents | Performance Validation Issues | en_US |
dc.description.tableofcontents | Predicting ISE100 Index With Neural Networks | en_US |
dc.description.tableofcontents | Stock Market Applications of ANNs in Turkey | en_US |
dc.description.tableofcontents | Data Set | en_US |
dc.description.tableofcontents | Network Structure | en_US |
dc.description.tableofcontents | Empirical Findings | en_US |
dc.identifier.citation | Görgün, O. (2008). Neural networks as a forecasting tool for financial decision-making. İstanbul: Işık Üniversitesi Fen Bilimleri Enstitüsü. | en_US |
dc.identifier.uri | https://hdl.handle.net/11729/931 | |
dc.institutionauthor | Görgün, Onur | en_US |
dc.language.iso | en | en_US |
dc.publisher | Işık Üniversitesi | en_US |
dc.relation.publicationcategory | Tez | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject.lcc | HG4012.5 .G67 2008 | |
dc.subject.lcsh | Finance -- Decision making -- Data processing. | en_US |
dc.subject.lcsh | Neural networks (Computer science) | en_US |
dc.subject.lcsh | Computer science. | en_US |
dc.title | Neural network as a forecasting tool for financial decision-making | en_US |
dc.title.alternative | Finansal karar almada öngörü aracı olarak sinir ağı | en_US |
dc.type | Master Thesis | en_US |
dspace.entity.type | Publication |