VC-dimension of rule sets
dc.authorid | 0000-0001-5838-4615 | |
dc.contributor.author | Yıldız, Olcay Taner | en_US |
dc.date.accessioned | 2015-11-24T14:10:51Z | |
dc.date.available | 2015-11-24T14:10:51Z | |
dc.date.issued | 2014-12-04 | |
dc.department | Işık Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.description.abstract | In this paper, we give and prove lower bounds of the VC-dimension of the rule set hypothesis class where the input features are binary or continuous. The VC-dimension of the rule set depends on the VC-dimension values of its rules and the number of inputs. | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Yıldız, O. T. (2014). VC-dimension of rule sets. Paper presented at the International Conference on Pattern Recognition, 3576-3581. doi:10.1109/ICPR.2014.615 | en_US |
dc.identifier.doi | 10.1109/ICPR.2014.615 | |
dc.identifier.endpage | 3581 | |
dc.identifier.isbn | 9781479952083 | |
dc.identifier.issn | 1051-4651 | |
dc.identifier.scopus | 2-s2.0-84919935805 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 3576 | |
dc.identifier.uri | https://hdl.handle.net/11729/720 | |
dc.identifier.uri | http://dx.doi.org/10.1109/ICPR.2014.615 | |
dc.identifier.wos | WOS:000359818003119 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Conference Proceedings Citation Index – Science (CPCI-S) | en_US |
dc.institutionauthor | Yıldız, Olcay Taner | en_US |
dc.institutionauthorid | 0000-0001-5838-4615 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | IEEE Computer Soc | en_US |
dc.relation.ispartof | International Conference on Pattern Recognition | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | VC-Dimension | en_US |
dc.subject | Rule Sets | en_US |
dc.subject | Computers | en_US |
dc.subject | Decision trees | en_US |
dc.subject | Labeling | en_US |
dc.subject | Pattern recognition | en_US |
dc.subject | Statistical learning | en_US |
dc.subject | Training | en_US |
dc.subject | Vectors | en_US |
dc.subject | Learning (artificial intelligence) | en_US |
dc.subject | Set theory | en_US |
dc.subject | VC-dimension values | en_US |
dc.subject | Binary input features | en_US |
dc.subject | Continuous input features | en_US |
dc.subject | Lower bounds | en_US |
dc.subject | Rule set hypothesis class | en_US |
dc.title | VC-dimension of rule sets | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication |