Spline based neural networks
dc.contributor.advisor | Kuru, Selahattin | en_US |
dc.contributor.author | Dalkılıç, Hikmet | en_US |
dc.contributor.other | Işık Üniversitesi, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği Yüksek Lisans Programı | en_US |
dc.date.accessioned | 2016-05-31T13:31:23Z | |
dc.date.available | 2016-05-31T13:31:23Z | |
dc.date.issued | 2005-06 | |
dc.department | Işık Üniversitesi, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği Yüksek Lisans Programı | en_US |
dc.description | Text in English ; Abstract: English and Turkish | en_US |
dc.description | Includes bibliographical references (leaves 70-71) | en_US |
dc.description | X, 72 leaves | en_US |
dc.description.abstract | In this thesis, we applied the Catmull-Rom splines and B-splines to the neural networks models, which are Multi Layer Perceptrons, Elman Networks, and Locally Recurrent Neural Networks, as adaptive activation functions. We derived the learning algorithms for the five new neural network models, which we proposed. This new models are called 2Multi Layer Perceptrons with Adaptive B- Spline Activation Function3, 2Elman Networks with Adaptive Catmull-Rom Spline Activation Function3, 2Elman Networks with Adaptive B- Spline Activation Function3, 2Locally Recurrent Neural Networks with Adaptive Catmull-Rom Spline Activation Function3, 2Locally Recurrent Neural Networks with Adaptive B- Spline Activation Function3. We measure the performance of these networks on the xor problem and compare the performance of them for this problem. To simulate the networks and to compare their performances we developed a web-based neural network simulator written in PHP 4 called SBNN. | en_US |
dc.description.abstract | Bu tez ile, Catmull-Rom spline fonksiyonları ve B-spline fonksiyonları uyarlanabilir aktivasyon fonksiyonları olarak, yapay sinir ağı modelleri olan Çok Katmanlı Ağlara,Elman ağlarına ve Yerel Geri Beslemeli ağlara uygulandı. Bu uygulamalardan oluşturduğumuz 5 yeni yapay sinir ağı modeli için öğrenme algoritmalarının çıkarımları yapıldı. Bu yeni modeller sırasıyla 2Uyarlanabilir Catmull-Rom Spline Aktivasyon Fonksiyonlu Çok Katmanlı Ağlar3, 2Uyarlanabilir B-Spline Aktivasyon Fonksiyonlu Çok Katmanlı Ağlar3 , 2Uyarlanabilir Catmull-Rom Spline Aktivasyon Fonksiyonlu Elman Ağları3, 2Uyarlanabilir B-Spline Aktivasyon Fonksiyonlu Elman Ağları3, 2Uyarlanabilir Catmull-Rom Spline Aktivasyon Fonksiyonlu Yerel Geri Beslemeli ağlar3, ve son olarak 2Uyarlanabilir B- Spline Aktivasyon Fonksiyonlu Yerel Geri Beslemeli ağlar3 diye adlandırılır. Ağların performansı xor problemi kullanılarak ölçüldü ve sonuçları birbirleriyle karşılaştırıldı. Yapay sinir ağlarını oluşturulması ve performanslarının ölçülmesi için SBNN adında PHP 4 programlama dilin ile yazılmış web tabanlı bir yapay sinir ağı similatörü geliştirildi. | en_US |
dc.description.tableofcontents | INTRODUCTION | en_US |
dc.description.tableofcontents | SPLINE FUNCTIONS | en_US |
dc.description.tableofcontents | Spline Specification | en_US |
dc.description.tableofcontents | Spline Function’s Mathematical Description | en_US |
dc.description.tableofcontents | MULTI LAYER PERCEPTRON | en_US |
dc.description.tableofcontents | Multi Layer Perceptron with Sigmoid Activation Functions | en_US |
dc.description.tableofcontents | The Structure of Multi Layer Perceptron | en_US |
dc.description.tableofcontents | Delta Learning Rule | en_US |
dc.description.tableofcontents | Multi Layer Perceptron with Adaptive Catmull-Rom Spline Activation Functions | en_US |
dc.description.tableofcontents | Gradient-Based Learning for Multi layer Perceptron with Adaptive Spline Activation Function | en_US |
dc.description.tableofcontents | Multi Layer Perceptron with Adaptive Catmull-Rom Spline Activation Functions | en_US |
dc.description.tableofcontents | ELMAN NEURAL NETWORKS | en_US |
dc.description.tableofcontents | Elman Networks with Sigmoid Activation Function | en_US |
dc.description.tableofcontents | Elman Networks With Adaptive Catmull-Rom Spline Activation Functions | en_US |
dc.description.tableofcontents | Elman Networks With Adaptive B-Spline Activation Functions | en_US |
dc.description.tableofcontents | LOCALLY RECURRENT NEURAL NETWORKS | en_US |
dc.description.tableofcontents | Locally Recurrent Neural Networks with Sigmoid Activation Functions | en_US |
dc.description.tableofcontents | Locally Recurrent Neural Networks with Adaptive Catmull-Rom Spline Activation Functions | en_US |
dc.description.tableofcontents | Locally Recurrent Neural Networks with Adaptive B-Spline Activation Functions | en_US |
dc.description.tableofcontents | PERFORMANS OFTHE NETWORKS | en_US |
dc.description.tableofcontents | Comparison of the Multi Layer Perceptron | en_US |
dc.description.tableofcontents | Comparison of the sigmoid activation functions and the B-spline activation function for MLP | en_US |
dc.description.tableofcontents | Comparison of the Catmull-Rom spline activation functions and the B-spline activation functions for MLP | en_US |
dc.description.tableofcontents | Comparison of the Elman Networks | en_US |
dc.description.tableofcontents | Comparison of the sigmoid activation functions and the B-spline activation function for Elman Networks | en_US |
dc.description.tableofcontents | Comparison of the Catmull-Rom spline activation functions and the B-spline activation functions for Elman Networks | en_US |
dc.description.tableofcontents | Comparison of the Catmull-Rom spline activation functions and the sigmoid activation functions for Elman Networks | en_US |
dc.description.tableofcontents | Comparison of the Locally Recurrent Neural Networks | en_US |
dc.description.tableofcontents | Comparison of the sigmoid activation functions and the B-spline activation function for Locally Recurrent Neural Networks | en_US |
dc.description.tableofcontents | Comparison of the Catmull-Rom spline activation functions and the sigmoid activation functions for Locally Recurrent Neural Networks | en_US |
dc.description.tableofcontents | Comparison of execution time of all model | en_US |
dc.description.tableofcontents | SPLINE BASED NEURAL NETWORK SIMULATOR (SBNN) | en_US |
dc.description.tableofcontents | Software Specification of SBNN | en_US |
dc.description.tableofcontents | The aim of this Software | en_US |
dc.description.tableofcontents | The Menu of the SBNN | en_US |
dc.description.tableofcontents | Training a network | en_US |
dc.description.tableofcontents | Training a network | en_US |
dc.description.tableofcontents | Running and deleting a network | en_US |
dc.description.tableofcontents | Comparing the Network Performance | en_US |
dc.description.tableofcontents | Comparing the Execution time performance | en_US |
dc.description.tableofcontents | CONCLUSION AND RECOMMENDATIONS FOR FUTURE WOR | en_US |
dc.description.tableofcontents | CD containing Thesis text and software code | en_US |
dc.identifier.citation | Dalkılıç, H. (2005). Spline based neural networks. İstanbul: Işık Üniversitesi Fen Bilimleri Enstitüsü. | en_US |
dc.identifier.uri | https://hdl.handle.net/11729/892 | |
dc.institutionauthor | Dalkılıç, Hikmet | en_US |
dc.language.iso | en | en_US |
dc.publisher | Işık Üniversitesi | en_US |
dc.relation.publicationcategory | Tez | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Adaptive activation functions | en_US |
dc.subject | Adaptive catmull-rom spline activation functions | en_US |
dc.subject | Adoptive B- spline activation functions | en_US |
dc.subject | SBNN | en_US |
dc.subject | Spline activation functions | en_US |
dc.subject | Spline networks | en_US |
dc.subject | Spline ağları | en_US |
dc.subject | Spline aktivasyon fonksiyonları | en_US |
dc.subject | Uyarlanabilir aktivasyon fonksiyonları | en_US |
dc.subject | Uyarlanabilir B-spline aktivasyon fonksiyonları | en_US |
dc.subject | Uyarlanabilir catmull-rom spline aktivasyon fonksiyonları | en_US |
dc.subject.lcc | QA76.87 .D35 2005 | |
dc.subject.lcsh | Neural networks (Computer science) | en_US |
dc.subject.lcsh | Spline theory -- Data processing. | en_US |
dc.subject.lcsh | Computer-aided design. | en_US |
dc.title | Spline based neural networks | en_US |
dc.title.alternative | Spline tabanlı yapay sinir ağları | en_US |
dc.type | Master Thesis | en_US |
dspace.entity.type | Publication |