Automated cell nucleus detection for large-volume electron microscopy of neural tissue
dc.authorid | 0000-0002-8649-6013 | |
dc.contributor.author | Tek, Faik Boray | en_US |
dc.contributor.author | Kroeger, Thorben | en_US |
dc.contributor.author | Hamprecht, Fred A. | en_US |
dc.contributor.author | Mikula, Shawn | en_US |
dc.date.accessioned | 2019-06-27T18:56:20Z | |
dc.date.available | 2019-06-27T18:56:20Z | |
dc.date.issued | 2014-04-29 | |
dc.department | Işık Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.description.abstract | Volumetric electron microscopy techniques, such as serial block-face electron microscopy (SBEM), generate massive amounts of image data that are used for reconstructing neural circuits. Typically, this requires time-intensive manual annotation of cells and their connections. To facilitate this analysis, we study the problem of automated detection of cell nuclei in a new SBEM dataset that contains cerebral cortex, white matter, and striatum from an adult mouse brain. The dataset was manually annotated to identify the locations of all 3309 cell nuclei in the volume. We make both dataset and annotations available here. Using a hybrid approach that combines interactive learning, morphological processing, and object level feature classification, we demonstrate automated detection of cell nuclei at 92.4% recall and 95.1% precision. These algorithms are not RAM-limited and can scale to arbitrarily large datasets. | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Tek, F. B., Kroeger, T., Mikula, S. & Hamprecht, F. A. (2014). Automated cell nucleus detection for large-volume electron microscopy of neural tissue. Paper presented at the 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 69-72. doi:10.1109/ISBI.2014.6867811 | en_US |
dc.identifier.endpage | 72 | |
dc.identifier.isbn | 9781467319614 | |
dc.identifier.issn | 1945-7928 | |
dc.identifier.scopus | 2-s2.0-84927539855 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 69 | |
dc.identifier.uri | https://hdl.handle.net/11729/1637 | |
dc.identifier.uri | http://dx.doi.org/10.1109/ISBI.2014.6867811 | |
dc.identifier.wos | WOS:000392750900018 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Conference Proceedings Citation Index – Science (CPCI-S) | en_US |
dc.institutionauthor | Tek, Faik Boray | en_US |
dc.institutionauthorid | 0000-0002-8649-6013 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Automated nucleus detection | en_US |
dc.subject | Block-face electron microscopy | en_US |
dc.subject | Interactive segmentation | en_US |
dc.subject | Random forest | en_US |
dc.subject | Block-wise connected | en_US |
dc.subject | Components | en_US |
dc.subject | Connectomics | en_US |
dc.subject | Soma | en_US |
dc.subject | Identification | en_US |
dc.subject | Brain | en_US |
dc.title | Automated cell nucleus detection for large-volume electron microscopy of neural tissue | en_US |
dc.type | Conference Object | en_US |