Yazar "Ak, Koray" seçeneğine göre listele
Listeleniyor 1 - 8 / 8
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın Automatic propbank generation for Turkish(Incoma Ltd, 2019-09) Ak, Koray; Yıldız, Olcay TanerSemantic role labeling (SRL) is an important task for understanding natural languages, where the objective is to analyse propositions expressed by the verb and to identify each word that bears a semantic role. It provides an extensive dataset to enhance NLP applications such as information retrieval, machine translation, information extraction, and question answering. However, creating SRL models are difficult. Even in some languages, it is infeasible to create SRL models that have predicate-argument structure due to lack of linguistic resources. In this paper, we present our method to create an automatic Turkish PropBank by exploiting parallel data from the translated sentences of English PropBank. Experiments show that our method gives promising results. © 2019 Association for Computational Linguistics (ACL).Yayın Comparison of Turkish proposition banks by frame matching(IEEE, 2018-12-06) Ak, Koray; Bakay, Özge; Yıldız, Olcay TanerBy indicating semantic relations between a predicate and its associated participants in a sentence and identifying the role-bearing constituents, SRL provides an extensive dataset to understand natural languages and to enhance several NLP applications such as information retrieval, machine translation, information extraction, and question answering. The availability of large resources and the development of statistical machine learning methods have increased the studies in the field of SRL. One of the widely-used semantic resources applied for multiple languages is PropBank. In this paper, PropBanks applied for Turkish are compared by checking semantic roles in the frame files of matched verb senses. As this integrated lexical resource for Turkish is aimed to be used in a multilingual resource along with English, creation of an inclusive lexical resource for Turkish is of great importance.Yayın Construction of a Turkish proposition bank(Tubitak Scientific & Technical Research Council Turkey, 2018) Ak, Koray; Toprak, Cansu; Esgel, Volkan; Yıldız, Olcay TanerThis paper describes our approach to developing the Turkish PropBank by adopting the semantic role-labeling guidelines of the original PropBank and using the translation of the English Penn-TreeBank as a resource. We discuss the semantic annotation process of the PropBank and language-specific cases for Turkish, the tools we have developed for annotation, and quality control for multiuser annotation. In the current phase of the project, more than 9500 sentences are semantically analyzed and predicate-argument information is extracted for 1330 verbs and 1914 verb senses. Our plan is to annotate 17,000 sentences by the end of 2017.Yayın A multilayer annotated corpus for Turkish(IEEE, 2018-06-06) Yıldız, Olcay Taner; Ak, Koray; Ercan, Gökhan; Topsakal, Ozan; Asmazoğlu, CengizIn this paper, we present the first multilayer annotated corpus for Turkish, which is a low-resourced agglutinative language. Our dataset consists of 9,600 sentences translated from the Penn Treebank Corpus. Annotated layers contain syntactic and semantic information including morphological disambiguation of words, named entity annotation, shallow parse, sense annotation, and semantic role label annotation.Yayın Parallel proposition bank construction for Turkish(Işık Üniversitesi, 2019-04-02) Ak, Koray; Yıldız, Olcay Taner; Işık Üniversitesi, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği Doktora ProgramıPropBank is the bank of propositions which contains hand-annotated corpus for predicate-argument information and semantic roles or arguments. It aims to provide an extensive dataset for enhancing NLP applications such as information retrieval, machine translation, information extraction, and question answering by adding a semantic information layer to the syntactic annotation. Via the added semantic layer, syntactic parser re?nements can be achieved which increases the e?ciency and improves application performance. The aim of this thesis is to construct proposition bank for Turkish Language. Only preliminary studies were carried out in terms of Turkish PropBank. This study is one of the pioneers for the language. In this study, a hand annotated Turkish PropBank is constructed from the translation of the parallel English PropBank corpus, other PropBank studies for Turkish language examined and compared with the proposition bank constructed, automatic PropBank construction for Turkish from both parallel sentence trees and phrase sentences is analyzed and automatic proposition banks generated for Turkish.Yayın TRopBank: Turkish PropBank V2.0(European Language Resources Association (ELRA), 2020-05-16) Kara, Neslihan; Aslan, Deniz Baran; Marşan, Büşra; Bakay, Özge; Ak, Koray; Yıldız, Olcay TanerIn this paper, we present and explain TRopBank “Turkish PropBank v2.0”. PropBank is a hand-annotated corpus of propositions which is used to obtain the predicate-argument information of a language. Predicate-argument information of a language can help understand semantic roles of arguments. “Turkish PropBank v2.0”, unlike PropBank v1.0, has a much more extensive list of Turkish verbs, with 17.673 verbs in total.Yayın Unsupervised morphological analysis using tries(Springer London, 2012) Ak, Koray; Yıldız, Olcay TanerThis article presents an unsupervised morphological analysis algorithm to segment words into roots and affixes. The algorithm relies on word occurrences in a given dataset. Target languages are English, Finnish, and Turkish, but the algorithm can be used to segment any word from any language given the wordlists acquired from a corpus consisting of words and word occurrences. In each iteration, the algorithm divides words with respect to occurrences and constructs a new trie for the remaining affixes. Preliminary experimental results on three languages show that our novel algorithm performs better than most of the previous algorithms.Yayın Unsupervised morphological analysis using tries(Işık Üniversitesi, 2011-04-29) Ak, Koray; Yıldız, Olcay Taner; Işık Üniversitesi, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği Yüksek Lisans ProgramıMorphological analysis or decomposition studies the structure, formation, function of words, identifies the morphemes (smallest meaning-bearing elements) of the language and attempts to formulate rules that model the language. It is widely used in different areas such as speech recognition, machine translation, information retrieval, text understanding, and statistical language modeling. Considering that the natural language processing applications are dealing with large amounts of data, it is not feasible to use linguists to analyze text corpus by hand, the complexity and real time Processing requirements leads to automated morphological analysis. As an alternative to the hand-made systems, there exist algorithms that work unsupervised manner and autonomously do morphological analysis for the words in an unannotated text corpus. In this thesis, an unsupervised leaming algorithm is proposed to extract infor-mation about the text corpus and the model of the language. The proposed algorithm constructs a trie that consists of characters and the occurrences of the words as nodes. The algorithm then detects roots of the given words by examining the occurrences in the path of the word. When the root is revealed, the algorithm creates a new trie from the affix parts, left after the root for each word. The algorithm continues recursively until there is no affbc left to process. Experimental results on three languages (Finnish, English and Turkish) show that our novel algorithm performs better than most of the previous algorithms in the field.