Yazar "Var, Esra" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın Differentially private attribute selection for classification(Işık Üniversitesi, 2015-06-18) Var, Esra; İnan, Ali; Işık Üniversitesi, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği Yüksek Lisans ProgramıAny study on processing or analyzing large data sets that contain personally sensitive data should conform against some form of privacy protection mechanism. Otherwise, malicious people can aceess these data sets to extract private information and use this private information in agency operations, blackmail, fraud or any other harmful actions. Importance and necessity of privacy preserving data mining is increasing day by day, hence public and government lawmakers, privacy advocates and the media are drawing more and more attention to this subject daily. This thesis proposes an approach to that selects features from a data set according to the differential privacy mechanism and implements this proposed solution on a popular data mining library called WEKA.Yayın Malaria parasite detection with deep transfer learning(IEEE, 2018-12-06) Var, Esra; Tek, Faik BorayThis study aims to automatically detect malaria parasites (Plasmodium sp) on images taken from Giemsa stained blood smears. Deep learning methods provide limited performance when sample size is low. In transfer learning, visual features are learned from large general data sets, and problem-specific classification problem can be solved successfully in restricted problem specific data sets. In this study, we apply transfer learning method to detect and classify malaria parasites. We use a popular pre-trained CNN model VGG19. We trained the model for 20 epoch on 1428 P Vivax, 1425 P Ovule, 1446 E Falciparum, 1450 P Malariae and 1440 non-parasite samples. The transfer learning model achieves %80, %83, %86, %75 precision and 83%, 86%, 86%, 79% f-measure on 19 test images.Yayın Sınıflandırma için diferansiyel mahremiyete dayalı öznitelik seçimi(Gazi Univ, Fac Engineering Architecture, 2018) Var, Esra; İnan, AliVeri madenciliği ve makine öğrenmesi çözümlerinin en önemli ön aşamalarından biri yapılacak analizde kullanılacak verinin özniteliklerinin uygun bir alt kümesini belirlemektir. Sınıflandırma yöntemleri için bu işlem, bir özniteliğin sınıf niteliği ile ne oranda ilişkili olduğuna bakılarak yapılır. Kişisel gizliliği koruyan pek çok sınıflandırma çözümü bulunmaktadır. Ancak bu yöntemler için öznitelik seçimi yapan çözümler geliştirilmemiştir. Bu çalışmada, istatistiksel veritabanı güvenliğinde bilinen en kapsamlı ve güvenli çözüm olan diferansiyel mahremiyete dayalı özgün öznitelik seçimi yöntemleri sunulmaktadır. Önerilen bu yöntemler, yaygın olarak kullanılan bir veri madenciliği kütüphanesi olan WEKA ile entegre edilmiş ve deney sonuçları ile önerilen çözümlerin sınıflandırma başarımına olumlu etkileri gösterilmiştir.