Sınıflandırma için diferansiyel mahremiyete dayalı öznitelik seçimi
Yükleniyor...
Dosyalar
Tarih
2018
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Gazi Univ, Fac Engineering Architecture
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Veri madenciliği ve makine öğrenmesi çözümlerinin en önemli ön aşamalarından biri yapılacak analizde kullanılacak verinin özniteliklerinin uygun bir alt kümesini belirlemektir. Sınıflandırma yöntemleri için bu işlem, bir özniteliğin sınıf niteliği ile ne oranda ilişkili olduğuna bakılarak yapılır. Kişisel gizliliği koruyan pek çok sınıflandırma çözümü bulunmaktadır. Ancak bu yöntemler için öznitelik seçimi yapan çözümler geliştirilmemiştir. Bu çalışmada, istatistiksel veritabanı güvenliğinde bilinen en kapsamlı ve güvenli çözüm olan diferansiyel mahremiyete dayalı özgün öznitelik seçimi yöntemleri sunulmaktadır. Önerilen bu yöntemler, yaygın olarak kullanılan bir veri madenciliği kütüphanesi olan WEKA ile entegre edilmiş ve deney sonuçları ile önerilen çözümlerin sınıflandırma başarımına olumlu etkileri gösterilmiştir.
Selecting a relevant subset of attributes is one of the most important data preprocessing steps of data mining and machine learning solutions. For the classification task, selection is based on the correlation between an attribute and the class attribute. There are various studies on privacy preserving classification. However, there is no attribute selection solution for such work in the literature. In this study, novel attribute selection methods based on the state of the art solution in statistical database security, known as differential privacy, are proposed. The proposed solutions are implemented with the popular data mining library WEKA and experimental results confirm the positive effects of the proposed solutions on classification accuracy.
Selecting a relevant subset of attributes is one of the most important data preprocessing steps of data mining and machine learning solutions. For the classification task, selection is based on the correlation between an attribute and the class attribute. There are various studies on privacy preserving classification. However, there is no attribute selection solution for such work in the literature. In this study, novel attribute selection methods based on the state of the art solution in statistical database security, known as differential privacy, are proposed. The proposed solutions are implemented with the popular data mining library WEKA and experimental results confirm the positive effects of the proposed solutions on classification accuracy.
Açıklama
Anahtar Kelimeler
Differential privacy, Classification, Attribute selection, Noise, Diferansiyel mahremiyet, Sınıflandırma, Öznitelik seçimi, Classification (of information), Data mining, Data privacy, Learning systems, Classification accuracy, Classification tasks, Data preprocessing, Differential privacies, Privacy-preserving classification, State of the art, Statistical database security, Solution mining
Kaynak
Journal of the Faculty of Engineering and Architecture of Gazi University
WoS Q Değeri
Q4
Scopus Q Değeri
Q2
Cilt
33
Sayı
1
Künye
Var, E. & İnan, A. (2018). Differentially private attribute selection for classification. Journal of the Faculty of Engineering and Architecture of Gazi University, 33(1), 323-336. doi:10.17341/gazimmfd.406804