Detecting facial features automatically
dc.contributor.advisor | Eskil, Mustafa Taner | en_US |
dc.contributor.author | Olzvoi, Uranchimeg | en_US |
dc.contributor.other | Işık Üniversitesi, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği Yüksek Lisans Programı | en_US |
dc.date.accessioned | 2016-06-22T01:33:37Z | |
dc.date.available | 2016-06-22T01:33:37Z | |
dc.date.issued | 2013-07-02 | |
dc.department | Işık Üniversitesi, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği Yüksek Lisans Programı | en_US |
dc.description | Text in English ; Abstract: English and Turkish | en_US |
dc.description | Includes bibliographical references (leaves 57-58) | en_US |
dc.description | xii, 59 leaves | en_US |
dc.description.abstract | There are many algorithms and approaches in object detection world. Many of them are based on Viola Jones algorithm. According to our observations, the features which help to detect an object are very critical for the success of this algorithm. These features are usually created manually. In this thesis we explore automatic extraction of Haar-like features. We describe the design and construction of a completely automated face detector for gray scale images. Finally, we illustrate the performance of our algorithm on various databases. | en_US |
dc.description.abstract | Obje tespit etmek icin bir çok algoritma ve yaklaşım vardır. Bunların çoğu Viola Jones algoritmasına dayanır. Bizim edindiğimiz tecrübelere göre, obje tespitinde temel konu o objeye ait özniteliklerdir. Bu öznitelikler genellikle manuel olarak oluşturulur. Bu tezde biz Haar-like özniteliklerin otomatik çıkarımları üzerine araştırma yaptık. Gri tonlamalı resimler için tamamıyla otomatikleştirilmiş bir yüz algılayıcısı tasarlayıp bunu uyguladık. Nihayetinde, tasarladığımız algoritmanın farklı veribankaları üzerindeki performansını gösterdik. | en_US |
dc.description.tableofcontents | Human Face Detection | en_US |
dc.description.tableofcontents | Motivations | en_US |
dc.description.tableofcontents | Challenges | en_US |
dc.description.tableofcontents | Approach | en_US |
dc.description.tableofcontents | Structure of Thesis | en_US |
dc.description.tableofcontents | COMPUTER VISION | en_US |
dc.description.tableofcontents | Image Processing | en_US |
dc.description.tableofcontents | Histogram Equalization | en_US |
dc.description.tableofcontents | Smoothing | en_US |
dc.description.tableofcontents | Edge Detection | en_US |
dc.description.tableofcontents | Object Detection | en_US |
dc.description.tableofcontents | Face Detection | en_US |
dc.description.tableofcontents | Face detection in images | en_US |
dc.description.tableofcontents | Real-time face detection | en_US |
dc.description.tableofcontents | HUMAN FACIAL FEATURE DETECTION | en_US |
dc.description.tableofcontents | Eigenfaces | en_US |
dc.description.tableofcontents | Neural Networks | en_US |
dc.description.tableofcontents | VIOLA-JONES | en_US |
dc.description.tableofcontents | Haar Like Features | en_US |
dc.description.tableofcontents | Thresholding | en_US |
dc.description.tableofcontents | Parity | en_US |
dc.description.tableofcontents | Integral Image | en_US |
dc.description.tableofcontents | AdaBoost Algorithm | en_US |
dc.description.tableofcontents | Derivated AdaBoost in the Viola-Jones method | en_US |
dc.description.tableofcontents | Cascade | en_US |
dc.description.tableofcontents | Conclusion | en_US |
dc.description.tableofcontents | IMPLEMENTATION | en_US |
dc.description.tableofcontents | Coding | en_US |
dc.description.tableofcontents | Preprocessing | en_US |
dc.description.tableofcontents | Face Detection Algorithm | en_US |
dc.description.tableofcontents | Implementation Challenges | en_US |
dc.description.tableofcontents | XOR Logic Operation | en_US |
dc.description.tableofcontents | AND Logic Operation | en_US |
dc.description.tableofcontents | OR Logic Operation | en_US |
dc.description.tableofcontents | Covariance | en_US |
dc.description.tableofcontents | Database | en_US |
dc.description.tableofcontents | The Importance of a Database | en_US |
dc.description.tableofcontents | Our chosen Databases | en_US |
dc.description.tableofcontents | RESULTS | en_US |
dc.description.tableofcontents | Bruteforce | en_US |
dc.description.tableofcontents | Covariance | en_US |
dc.description.tableofcontents | Super Feature | en_US |
dc.description.tableofcontents | Best N Feature | en_US |
dc.description.tableofcontents | BestNFeat + Majority | en_US |
dc.description.tableofcontents | AND-OR-XOR | en_US |
dc.identifier.citation | Olzvoi, U. (2013). Detecting facial features automatically. İstanbul: Işık Üniversitesi Fen Bilimleri Enstitüsü. | en_US |
dc.identifier.uri | https://hdl.handle.net/11729/1000 | |
dc.institutionauthor | Olzvoi, Uranchimeg | en_US |
dc.language.iso | en | en_US |
dc.publisher | Işık Üniversitesi | en_US |
dc.relation.publicationcategory | Tez | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject.lcc | TA1650 .O49 2013 | |
dc.subject.lcsh | Computer engineering. | en_US |
dc.subject.lcsh | Facial expression. | en_US |
dc.subject.lcsh | Sign language. | en_US |
dc.subject.lcsh | Human face recognition (Computer science) | en_US |
dc.subject.lcsh | Pattern recognition systems. | en_US |
dc.title | Detecting facial features automatically | en_US |
dc.type | Master Thesis | en_US |
dspace.entity.type | Publication |