Facial expression recognition based on anatomy

Yükleniyor...
Küçük Resim

Tarih

2014-02

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Academic Press Inc Elsevier Science

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

In this study, we propose a novel approach to facial expression recognition that capitalizes on the anatomical structure of the human face. We model human face with a high-polygon wireframe model that embeds all major muscles. Influence regions of facial muscles are estimated through a semi-automatic customization process. These regions are projected to the image plane to determine feature points. Relative displacement of each feature point between two image frames is treated as an evidence of muscular activity. Feature point displacements are projected back to the 3D space to estimate the new coordinates of the wireframe vertices. Muscular activities that would produce the estimated deformation are solved through a least squares algorithm. We demonstrate the representative power of muscle force based features on three classifiers; NB, SVM and Adaboost Ability to extract muscle forces that compose a facial expression will enable detection of subtle expressions, replicating an expression on animated characters and exploration of psychologically unknown mechanisms of facial expressions.

Açıklama

Anahtar Kelimeler

Facial anatomy, Muscle force, Features, Facial action coding system, Active appearance models, Robust face tracking, Information fusion, Motion, Video, Images, Face recognition, Adaptive boosting, Gesture recognition, Muscle, Facial expression recognition, Least squares algorithm, Relative displacement

Kaynak

Computer Vision and Image Understanding

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

119

Sayı

Künye

Eskil, M. T. & Benli, K. S. (2014). Facial expression recognition based on anatomy. Computer Vision and Image Understanding, 119, 1-14. doi:10.1016/j.cviu.2013.11.002