Facial expression recognition based on anatomy
dc.authorid | 0000-0003-0298-0690 | |
dc.authorid | 0000-0001-6282-6703 | |
dc.contributor.author | Eskil, Mustafa Taner | en_US |
dc.contributor.author | Benli, Kristin Surpuhi | en_US |
dc.date.accessioned | 2015-01-15T23:02:52Z | |
dc.date.available | 2015-01-15T23:02:52Z | |
dc.date.issued | 2014-02 | |
dc.department | Işık Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.description.abstract | In this study, we propose a novel approach to facial expression recognition that capitalizes on the anatomical structure of the human face. We model human face with a high-polygon wireframe model that embeds all major muscles. Influence regions of facial muscles are estimated through a semi-automatic customization process. These regions are projected to the image plane to determine feature points. Relative displacement of each feature point between two image frames is treated as an evidence of muscular activity. Feature point displacements are projected back to the 3D space to estimate the new coordinates of the wireframe vertices. Muscular activities that would produce the estimated deformation are solved through a least squares algorithm. We demonstrate the representative power of muscle force based features on three classifiers; NB, SVM and Adaboost Ability to extract muscle forces that compose a facial expression will enable detection of subtle expressions, replicating an expression on animated characters and exploration of psychologically unknown mechanisms of facial expressions. | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Eskil, M. T. & Benli, K. S. (2014). Facial expression recognition based on anatomy. Computer Vision and Image Understanding, 119, 1-14. doi:10.1016/j.cviu.2013.11.002 | en_US |
dc.identifier.doi | 10.1016/j.cviu.2013.11.002 | |
dc.identifier.endpage | 14 | |
dc.identifier.issn | 1077-3142 | |
dc.identifier.issn | 1090-235X | |
dc.identifier.scopus | 2-s2.0-84890404701 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 1 | |
dc.identifier.uri | https://hdl.handle.net/11729/549 | |
dc.identifier.uri | http://dx.doi.org/10.1016/j.cviu.2013.11.002 | |
dc.identifier.volume | 119 | |
dc.identifier.wos | WOS:000330752700001 | |
dc.identifier.wosquality | Q2 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Science Citation Index Expanded (SCI-EXPANDED) | en_US |
dc.institutionauthor | Eskil, Mustafa Taner | en_US |
dc.institutionauthor | Benli, Kristin Surpuhi | en_US |
dc.institutionauthorid | 0000-0003-0298-0690 | |
dc.institutionauthorid | 0000-0001-6282-6703 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | Academic Press Inc Elsevier Science | en_US |
dc.relation.ispartof | Computer Vision and Image Understanding | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Facial anatomy | en_US |
dc.subject | Muscle force | en_US |
dc.subject | Features | en_US |
dc.subject | Facial action coding system | en_US |
dc.subject | Active appearance models | en_US |
dc.subject | Robust face tracking | en_US |
dc.subject | Information fusion | en_US |
dc.subject | Motion | en_US |
dc.subject | Video | en_US |
dc.subject | Images | en_US |
dc.subject | Face recognition | en_US |
dc.subject | Adaptive boosting | en_US |
dc.subject | Gesture recognition | en_US |
dc.subject | Muscle | en_US |
dc.subject | Facial expression recognition | en_US |
dc.subject | Least squares algorithm | en_US |
dc.subject | Relative displacement | en_US |
dc.title | Facial expression recognition based on anatomy | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 549.pdf
- Boyut:
- 3.58 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Publisher's Version