Cost-conscious comparison of supervised learning algorithms over multiple data sets

Yükleniyor...
Küçük Resim

Tarih

2012-04

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Sci Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

In the literature, there exist statistical tests to compare supervised learning algorithms on multiple data sets in terms of accuracy but they do not always generate an ordering. We propose Multi(2)Test, a generalization of our previous work, for ordering multiple learning algorithms on multiple data sets from "best" to "worst" where our goodness measure is composed of a prior cost term additional to generalization error. Our simulations show that Multi2Test generates orderings using pairwise tests on error and different types of cost using time and space complexity of the learning algorithms.

Açıklama

Anahtar Kelimeler

Machine learning, Statistical tests, Classifier comparison, Model selection, Model complexity, Statistical comparisons, Classification, Tests, Classifiers, Computer simulation, Supervised learning, Generalization error, Machine-learning, Multiple data, Multiple learning algorithms, Space complexity, Learning algorithms

Kaynak

Pattern Recognition

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

45

Sayı

4

Künye

Ulaş, A., Yıldz, O. T. & Alpaydın, A. İ. E. (2012). Cost-conscious comparison of supervised learning algorithms over multiple data sets. Pattern Recognition, 45(4), 1772-1781. doi:10.1016/j.patcog.2011.10.005