Cost-conscious comparison of supervised learning algorithms over multiple data sets
dc.authorid | 0000-0003-2225-7491 | |
dc.authorid | 0000-0001-5838-4615 | |
dc.authorid | 0000-0001-7506-0321 | |
dc.contributor.author | Ulaş, Aydın | en_US |
dc.contributor.author | Yıldız, Olcay Taner | en_US |
dc.contributor.author | Alpaydın, Ahmet İbrahim Ethem | en_US |
dc.date.accessioned | 2015-01-15T23:02:04Z | |
dc.date.available | 2015-01-15T23:02:04Z | |
dc.date.issued | 2012-04 | |
dc.department | Işık Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.description.abstract | In the literature, there exist statistical tests to compare supervised learning algorithms on multiple data sets in terms of accuracy but they do not always generate an ordering. We propose Multi(2)Test, a generalization of our previous work, for ordering multiple learning algorithms on multiple data sets from "best" to "worst" where our goodness measure is composed of a prior cost term additional to generalization error. Our simulations show that Multi2Test generates orderings using pairwise tests on error and different types of cost using time and space complexity of the learning algorithms. | en_US |
dc.description.sponsorship | We would like to thank Mehmet Gonen for discussions. This work has been supported by the Turkish Academy of Sciences in the framework of the Young Scientist Award Program (EA-TUBA-GEBIP/2001-1-1), Bogazici University Scientific Research Project 07HA101, Turkish Scientific Technical Research Council (TUBITAK) EEEAG 107E127, 107E222 and 109E186 | en_US |
dc.description.sponsorship | We would like to thank Mehmet Gonen for discussions. This work has been supported by the Turkish Academy of Sciences in the framework of the Young Scientist Award Program (EA-TUBA-GEBIP/2001-1-1), Bogazici University Scientific Research Project 07HA101, Turkish Scientific Technical Research Council (TUBITAK) EEEAG 107E127, 107E222 and 109E186. | en_US |
dc.description.version | Publisher's Version | en_US |
dc.description.version | Author Pre-Print | en_US |
dc.identifier.citation | Ulaş, A., Yıldz, O. T. & Alpaydın, A. İ. E. (2012). Cost-conscious comparison of supervised learning algorithms over multiple data sets. Pattern Recognition, 45(4), 1772-1781. doi:10.1016/j.patcog.2011.10.005 | en_US |
dc.identifier.doi | 10.1016/j.patcog.2011.10.005 | |
dc.identifier.endpage | 1781 | |
dc.identifier.issn | 0031-3203 | |
dc.identifier.issn | 1873-5142 | |
dc.identifier.issue | 4 | |
dc.identifier.scopus | 2-s2.0-83655191921 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 1772 | |
dc.identifier.uri | https://hdl.handle.net/11729/449 | |
dc.identifier.uri | http://dx.doi.org/10.1016/j.patcog.2011.10.005 | |
dc.identifier.volume | 45 | |
dc.identifier.wos | WOS:000300459000044 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Science Citation Index Expanded (SCI-EXPANDED) | en_US |
dc.institutionauthor | Yıldız, Olcay Taner | en_US |
dc.institutionauthorid | 0000-0001-5838-4615 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | Elsevier Sci Ltd | en_US |
dc.relation.ispartof | Pattern Recognition | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Statistical tests | en_US |
dc.subject | Classifier comparison | en_US |
dc.subject | Model selection | en_US |
dc.subject | Model complexity | en_US |
dc.subject | Statistical comparisons | en_US |
dc.subject | Classification | en_US |
dc.subject | Tests | en_US |
dc.subject | Classifiers | en_US |
dc.subject | Computer simulation | en_US |
dc.subject | Supervised learning | en_US |
dc.subject | Generalization error | en_US |
dc.subject | Machine-learning | en_US |
dc.subject | Multiple data | en_US |
dc.subject | Multiple learning algorithms | en_US |
dc.subject | Space complexity | en_US |
dc.subject | Learning algorithms | en_US |
dc.title | Cost-conscious comparison of supervised learning algorithms over multiple data sets | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |