ANN activation function estimators for homomorphic encrypted inference
dc.authorid | 0009-0001-4214-8738 | |
dc.authorid | 0000-0003-2865-6370 | |
dc.contributor.author | Harb, Mhd Raja Abou | en_US |
dc.contributor.author | Çeliktaş, Barış | en_US |
dc.date.accessioned | 2025-09-12T12:23:57Z | |
dc.date.available | 2025-09-12T12:23:57Z | |
dc.date.issued | 2025-06-13 | |
dc.department | Işık Üniversitesi, Lisansüstü Eğitim Enstitüsü, Bilgisayar Mühendisliği Yüksek Lisans Programı | en_US |
dc.department | Işık University, School of Graduate Studies, Master’s Program in Computer Engineering | en_US |
dc.department | Işık Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering and Natural Sciences, Department of Computer Engineering | en_US |
dc.description.abstract | Homomorphic Encryption (HE) enables secure computations on encrypted data, facilitating machine learning inference in sensitive environments such as healthcare and finance. However, efficiently handling non-linear activation functions, specifically Sigmoid and Tanh, remains a significant computational challenge for encrypted inference using Artificial Neural Networks (ANNs). This study introduces a lightweight, ANN-based estimator designed to accurately approximate activation functions under homomorphic encryption. Unlike traditional polynomial and piecewise linear approximations, the proposed ANN estimators achieve superior accuracy with lower computational overhead associated with bootstrapping or high-degree polynomial techniques. These estimators are trained on plaintext data and seamlessly integrated into encrypted inference pipelines, significantly outperforming conventional methods. Experimental evaluations demonstrate notable improvements, with ANN estimators enhancing accuracy by approximately 2% for Sigmoid and up to 73% for Tanh functions, improving F1-scores by approximately 2% for Sigmoid and up to 88% for Tanh, and markedly reducing Mean Square Error (MSE) by up to 96% compared to polynomial approximations. The ANN estimator achieves an accuracy of 97.70% and an AUC of 0.9997 when integrated into a CNN architecture on the MNIST dataset, and an accuracy of 85.25% with an AUC of 0.9459 on the UCI Heart Disease dataset during ciphertext inference. These results underscore the estimator’s practical effectiveness and computational feasibility, making it suitable for secure and efficient ANN inference in encrypted environments. | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Harb, M. R. A. & Çeliktaş, B. (2025). ANN activation function estimators for homomorphic encrypted inference. IEEE Access, 13, 103512-103530. doi:https://doi.org/10.1109/ACCESS.2025.3579667 | en_US |
dc.identifier.doi | 10.1109/ACCESS.2025.3579667 | |
dc.identifier.endpage | 103530 | |
dc.identifier.issn | 2169-3536 | |
dc.identifier.scopus | 2-s2.0-105008277004 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 103512 | |
dc.identifier.uri | https://hdl.handle.net/11729/6699 | |
dc.identifier.uri | https://doi.org/10.1109/ACCESS.2025.3579667 | |
dc.identifier.volume | 13 | |
dc.identifier.wos | WOS:001512606800011 | |
dc.identifier.wosquality | Q2 | |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Science Citation Index Expanded (SCI-EXPANDED) | en_US |
dc.institutionauthor | Harb, Mhd Raja Abou | en_US |
dc.institutionauthor | Çeliktaş, Barış | en_US |
dc.institutionauthorid | 0009-0001-4214-8738 | |
dc.institutionauthorid | 0000-0003-2865-6370 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | IEEE Access | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Öğrenci | en_US |
dc.relation.publicationcategory | Makale - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Activation function estimator | en_US |
dc.subject | Artificial neural network | en_US |
dc.subject | Encrypted inference | en_US |
dc.subject | Homomorphic encryption | en_US |
dc.subject | Ciphertext | en_US |
dc.subject | Clustering algorithms | en_US |
dc.subject | Inference engines | en_US |
dc.subject | Learning systems | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Mean square error | en_US |
dc.subject | Piecewise linear techniques | en_US |
dc.subject | Polynomial approximation | en_US |
dc.subject | Privacy-preserving techniques | en_US |
dc.subject | Activation functions | en_US |
dc.subject | Encrypted inference | en_US |
dc.subject | Ho-momorphic encryptions | en_US |
dc.subject | Homomorphic-encryptions | en_US |
dc.subject | Machine-learning | en_US |
dc.subject | Neural-networks | en_US |
dc.subject | Privacy preserving | en_US |
dc.subject | Privacy-preserving machine learning | en_US |
dc.subject | Sigmoids | en_US |
dc.subject | Chemical activation | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Accuracy | en_US |
dc.subject | Polynomials | en_US |
dc.subject | Computer architecture | en_US |
dc.subject | Computational efficiency | en_US |
dc.subject | Homomorphic encryption | en_US |
dc.subject | Distributed databases | en_US |
dc.subject | Computational modeling | en_US |
dc.subject | Arithmetic | en_US |
dc.title | ANN activation function estimators for homomorphic encrypted inference | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- ANN_Activation_Function_Estimators_for_Homomorphic_Encrypted_Inference.pdf
- Boyut:
- 2.45 MB
- Biçim:
- Adobe Portable Document Format
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.17 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: