Re-mining positive and negative association mining results

dc.authorid0000-0002-5731-3134
dc.authorid0000-0002-5167-4836
dc.authorid0000-0002-3241-4617
dc.authorid0000-0002-4061-5873
dc.contributor.authorDemiriz, Ayhanen_US
dc.contributor.authorErtek, Gürdalen_US
dc.contributor.authorAtan, Sabri Tankuten_US
dc.contributor.authorKula, Ufuken_US
dc.date.accessioned2019-07-30T17:20:17Z
dc.date.available2019-07-30T17:20:17Z
dc.date.issued2010
dc.departmentIşık Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümüen_US
dc.departmentIşık University, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.descriptionThis work is financially supported by the Turkish Scientific Research Council under Grant TUBITAK 107M257.en_US
dc.description.abstractPositive and negative association mining are well-known and extensively studied data mining techniques to analyze market basket data. Efficient algorithms exist to find both types of association, separately or simultaneously. Association mining is performed by operating on the transaction data. Despite being an integral part of the transaction data, the pen_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)en_US
dc.description.versionPublisher's Versionen_US
dc.identifier.citationDemiriz, A., Ertek, G., Atan, S. T. & Kula, U. (2010). Re-mining positive and negative association mining results. Paper presented at the Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6171, 101-114. doi:10.1007/978-3-642-14400-4_8en_US
dc.identifier.doi10.1007/978-3-642-14400-4_8
dc.identifier.endpage114
dc.identifier.isbn9783642143991
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.scopus2-s2.0-77954874193
dc.identifier.scopusqualityQ3
dc.identifier.startpage101
dc.identifier.urihttps://hdl.handle.net/11729/1664
dc.identifier.urihttps://doi.org/10.1007/978-3-642-14400-4_8
dc.identifier.volume6171
dc.identifier.wosWOS:000286902300008
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakConference Proceedings Citation Index – Science (CPCI-S)en_US
dc.institutionauthorAtan, Sabri Tankuten_US
dc.institutionauthorid0000-0002-3241-4617
dc.language.isoenen_US
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.publisherSpringer-Verlag Berlinen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRulesen_US
dc.subjectFrameworken_US
dc.subjectAssociation miningen_US
dc.subjectData mining techniquesen_US
dc.subjectEfficient algorithmen_US
dc.subjectIntegral parten_US
dc.subjectMarket basketen_US
dc.subjectMarket basket analysisen_US
dc.subjectNew approachesen_US
dc.subjectTime informationen_US
dc.subjectTransaction dataen_US
dc.subjectUnderlying factorsen_US
dc.subjectAlgorithmsen_US
dc.subjectAssociative processingen_US
dc.subjectEconomicsen_US
dc.subjectIndustryen_US
dc.titleRe-mining positive and negative association mining resultsen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
1664.pdf
Boyut:
367.7 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Publisher's Version
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.71 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: