A new condition for robust stability of uncertain neural networks with time delays

dc.authorid0000-0002-4390-5139
dc.contributor.authorArik, Sabrien_US
dc.date.accessioned2015-01-15T23:02:51Z
dc.date.available2015-01-15T23:02:51Z
dc.date.issued2014-03-27
dc.departmentIşık Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.departmentIşık University, Faculty of Engineering, Department of Electrical-Electronics Engineeringen_US
dc.description.abstractThis paper is concerned with the global asymptotic stability problem of dynamical neural networks with multiple time delays under parameter uncertainties. First carrying out an analysis of existence and uniqueness of the equilibrium point by means of the Homeomorphism theory, and then, studying the global asymptotic stability of the equilibrium point by constructing a suitable Lyapunov functional, we derive a new global robust stability criterion for the class of delayed neural networks with respect to the Lipschitz activation functions. The result obtained establishes a relationship between the neural network parameters only and it is independent of the time delay parameters. It is shown that the established stability condition generalizes some existing ones and it can be considered to an alternative result to some other corresponding results derived in previous literature. We also give some comparative numerical examples to demonstrate the validity and effectiveness of our proposed result.en_US
dc.description.versionPublisher's Versionen_US
dc.identifier.citationArık, S. (2014). A new condition for robust stability of uncertain neural networks with time delays. Neurocomputing, 128, 476-482. doi:10.1016/j.neucom.2013.08.017en_US
dc.identifier.doi10.1016/j.neucom.2013.08.017
dc.identifier.endpage482
dc.identifier.issn0925-2312
dc.identifier.issn1872-8286
dc.identifier.scopus2-s2.0-84893710367
dc.identifier.scopusqualityQ1
dc.identifier.startpage476
dc.identifier.urihttps://hdl.handle.net/11729/543
dc.identifier.urihttp://dx.doi.org/10.1016/j.neucom.2013.08.017
dc.identifier.volume128
dc.identifier.wosWOS:000331851700051
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakScience Citation Index Expanded (SCI-EXPANDED)en_US
dc.institutionauthorArik, Sabrien_US
dc.institutionauthorid0000-0002-4390-5139
dc.language.isoenen_US
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.publisherElsevier Science BVen_US
dc.relation.ispartofNeurocomputingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectInterval matricesen_US
dc.subjectRobust stabilityen_US
dc.subjectDelayed neural networksen_US
dc.subjectLyapunov functionalsen_US
dc.subjectHomeomorphic mappingen_US
dc.subjectExponential stabilityen_US
dc.subjectVarying delaysen_US
dc.subjectDistributed delaysen_US
dc.subjectNeutral-typeen_US
dc.subjectDiscreteen_US
dc.subjectCriterionen_US
dc.subjectMatricesen_US
dc.subjectNormen_US
dc.titleA new condition for robust stability of uncertain neural networks with time delaysen_US
dc.typeArticleen_US
dspace.entity.typePublication

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
543.pdf
Boyut:
326.3 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Publisher's Version