Bounds for the faber coefficients of certain classes of functions analytic in an ellipse

Yükleniyor...
Küçük Resim

Tarih

2005

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Rocky Mt Math Consortium

Erişim Hakkı

info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

Let Omega be a bounded, simply connected domain in C with 0 is an element of Omega and aOmega analytic. Let S(Omega) denote the class of functions F(z) which are analytic and univalent in Omega with F(0) = 0 and F'(0) = 1. Let {Phi(n)(z)} infinity n=0 be the Faber polynomials associated with Omega. If F(z) is an element of S(Omega), then F(z) can be expanded in a series of the form where r > 1. In this paper we obtain sharp bounds for the Faber coefficients A(0), A(1) and A(2) of functions F(z) in S(E-r) and in certain related classes.

Açıklama

Anahtar Kelimeler

Faber polynomials, Faber coefficients, Jacobi elliptic, Sine function

Kaynak

Rocky Mountain Journal of Mathematics

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

35

Sayı

1

Künye

Haliloglu, E. & Johnston, E. H. (2005). Bounds for the faber coefficients of certain classes of functions analytic in an ellipse. Rocky Mountain Journal of Mathematics, 35(1), 167-179. doi:10.1216/rmjm/1181069774