Bounds for the faber coefficients of certain classes of functions analytic in an ellipse
Yükleniyor...
Dosyalar
Tarih
2005
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Rocky Mt Math Consortium
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Let Omega be a bounded, simply connected domain in C with 0 is an element of Omega and aOmega analytic. Let S(Omega) denote the class of functions F(z) which are analytic and univalent in Omega with F(0) = 0 and F'(0) = 1. Let {Phi(n)(z)} infinity n=0 be the Faber polynomials associated with Omega. If F(z) is an element of S(Omega), then F(z) can be expanded in a series of the form where r > 1. In this paper we obtain sharp bounds for the Faber coefficients A(0), A(1) and A(2) of functions F(z) in S(E-r) and in certain related classes.
Açıklama
Anahtar Kelimeler
Faber polynomials, Faber coefficients, Jacobi elliptic, Sine function
Kaynak
Rocky Mountain Journal of Mathematics
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
35
Sayı
1
Künye
Haliloglu, E. & Johnston, E. H. (2005). Bounds for the faber coefficients of certain classes of functions analytic in an ellipse. Rocky Mountain Journal of Mathematics, 35(1), 167-179. doi:10.1216/rmjm/1181069774