An accurate CMOS interface small capacitance variation sensing circuit for capacitive sensor applications
Yükleniyor...
Dosyalar
Tarih
2017-12
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer Birkhauser
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this paper, an accurate front-end CMOS interface circuit for sensing very small capacitance changes in capacitive sensors is presented. The proposed structure scales capacitance variation to the sensible impedance changing. The scaling factor of the circuit can be easily tuned by adjusting bias points of the transistors. In order to cancel or decrease the parasitic components, the RC feedback and input transistor cascading techniques are employed in the design. To simulate the circuit, HSPICE simulator is utilized to verify the validity of the theoretical formulations in 0.18 mu m technology. According to schematic and post-layout simulation results, input impedance changes linearly versus capacitance variations up to 0.7 GHz, while the sensor capacitance changing is varied between 0 and 200 fF. According to the simulation results, total dc power consumption is obtained as low as 1 mW with 0.9 V power supply.
Açıklama
Anahtar Kelimeler
Capacitance scaling, Input impedance, Gyrator, Parasitic components, Micro-sensor, Implementation, Accelerometer, Design, Capacitance, CMOS integrated circuits, Electric impedance, Electric impedance measurement, Gyrators, Microsensors, SPICE, Timing circuits, Capacitance variation, DC power consumption, Post layout simulation, Sensor applications, Theoretical formulation, Capacitive sensors
Kaynak
Circuits, Systems, and Signal Processing
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
36
Sayı
12
SI
SI
Künye
Momen, H. G., Yazgı, M., Köprü, R. & Saatlo, A. N. (2017). An accurate CMOS interface small capacitance variation sensing circuit for capacitive sensor applications. Circuits, Systems, and Signal Processing, 36(12), 4908-4918. doi:10.1007/s00034-017-0657-8