3-D Mesh geometry compression with set partitioning in the spectral domain

dc.authorid0000-0001-6556-4104
dc.authorid0000-0003-1322-6669
dc.authorid0000-0002-6842-1528
dc.contributor.authorBayazıt, Uluğen_US
dc.contributor.authorKonur, Umuten_US
dc.contributor.authorAteş, Hasan Fehmien_US
dc.date.accessioned2015-01-15T23:01:36Z
dc.date.available2015-01-15T23:01:36Z
dc.date.issued2010-02
dc.departmentIşık Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.departmentIşık University, Faculty of Engineering, Department of Electrical-Electronics Engineeringen_US
dc.description.abstractThis paper explains the development of a highly efficient progressive 3-D mesh geometry coder based on the region adaptive transform in the spectral mesh compression method. A hierarchical set partitioning technique, originally proposed for the efficient compression of wavelet transform coefficients in high-performance wavelet-based image coding methods, is proposed for the efficient compression of the coefficients of this transform. Experiments confirm that the proposed coder employing such a region adaptive transform has a high compression performance rarely achieved by other state of the art 3-D mesh geometry compression algorithms. A new, high-performance fixed spectral basis method is also proposed for reducing the computational complexity of the transform. Many-to-one mappings are employed to relate the coded irregular mesh region to a regular mesh whose basis is used. To prevent loss of compression performance due to the low-pass nature of such mappings, transitions are made from transform-based coding to spatial coding on a per region basis at high coding rates. Experimental results show the performance advantage of the newly proposed fixed spectral basis method over the original fixed spectral basis method in the literature that employs one-to-one mappings.en_US
dc.description.sponsorshipThis work was supported in part by the Scientific and Technological Research Council of Turkey, and conducted under Project 106E064en_US
dc.description.versionPublisher's Versionen_US
dc.identifier.citationBayazit, U., Konur, U. & Ateş, H. F. (2010). 3-D mesh geometry compression with set partitioning in the spectral domain. IEEE Transactions on Circuits and Systems for Video Technology, 16(2), 179-188. doi:10.1109/TCSVT.2009.2026939en_US
dc.identifier.doi10.1109/TCSVT.2009.2026939
dc.identifier.endpage188
dc.identifier.issn1051-8215
dc.identifier.issn1558-2205
dc.identifier.issue2
dc.identifier.scopus2-s2.0-76649134146
dc.identifier.scopusqualityQ1
dc.identifier.startpage179
dc.identifier.urihttps://hdl.handle.net/11729/379
dc.identifier.urihttp://dx.doi.org/10.1109/TCSVT.2009.2026939
dc.identifier.volume20
dc.identifier.wosWOS:000274394900002
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakScience Citation Index Expanded (SCI-EXPANDED)en_US
dc.institutionauthorAteş, Hasan Fehmien_US
dc.institutionauthorid0000-0002-6842-1528
dc.language.isoenen_US
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEE-INST Electrical Electronics Engineers Incen_US
dc.relation.ispartofIEEE Transactions on Circuits and Systems for Video Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectComputer graphicsen_US
dc.subjectData compressionen_US
dc.subjectData visualizationen_US
dc.subjectTransform codingen_US
dc.subjectVirtual realityen_US
dc.subjectEfficienten_US
dc.subjectQuantizationen_US
dc.subjectErroren_US
dc.title3-D Mesh geometry compression with set partitioning in the spectral domainen_US
dc.typeArticleen_US
dspace.entity.typePublication

Dosyalar

Orijinal paket
Listeleniyor 1 - 2 / 2
Küçük Resim Yok
İsim:
379.pdf
Boyut:
689.1 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Publisher's Version
Yükleniyor...
Küçük Resim
İsim:
379.pdf
Boyut:
701.29 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Author Post Print