Theoretical calculation of the kinetic coefficient of normal crystal growth
Dosyalar
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
An expression for the velocity u of migration of a diffuse simple crystal-melt interface has been derived on the basis of the theory of atomic mobility in supercooled liquids: u = K-0 (T / T-m) DeltaT, where DeltaT = T-m - T the undercooling below the melting point T-m; K-0 is the kinetic coefficient of atomic attachment, which is used in models of crystal growth. It has been calculated for a number of metals. u(max) = K0Tm / 4 is the theoretical limit of the velocity of crystal growth. For a number of FCC metals the theoretical limit of crystal growth has been found to be of order of 200 m/s. The crystal growth kinetics has been shown to be limited by the atomic self-diffusion in the interface, for which the strong dependence on the orientation of the crystal/melt interface has been explained.